Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Flammability hazards of typical fuels used in wind turbine nacelle

View through CrossRef
SummaryThis study aims to develop a complete methodology for assessing flammability hazards of typical fuels (ie, transformer oil, hydraulic oil, gear oil, and lubricating grease) used in a wind turbine nacelle by combining different experimental techniques such as thermogravimetric analysis and cone calorimetry. Pyrolysis properties (onset temperature, temperature of maximum mass loss rate, and mass residue) and reaction‐to‐fire properties (ignition time, heat release rate, mass loss rate, and smoke release rate) were determined and used for a preliminary assessment of thermal stability and flammability hazards. Additional indices, for ignition and thermal behavior (effective heat of combustion, average smoke yield, and smoke point height, heat release capacity, fire hazard parameter, and smoke parameter, were calculated to provide a more advanced assessment of the hazards in a wind turbine. Results show that pyrolysis of transformer oil, lubricating grease, hydraulic oil, and gear oil occur in the range of 150°C to 550°C. Lubricating grease and transformer oil show the higher and lower thermal stabilities with maximum pyrolysis rate temperatures of 471°C and 282°C, respectively. The measured relation between ignition time and radiant heat flux agrees well with Janssens method (a power of 0.55). The aforementioned indices appear to provide a reasonable prediction of performance under real fire conditions according to a full‐scale fire test documented by Declercq and Van Schevensteen. The results of the study indicate that transformer oil is the easiest to ignite while lubricating grease is the most difficult to ignite but also has the highest smoke production rate; that transformer oil has the highest heat release rate while gear oil has the lowest; and that the fire hazard parameter is the highest for transformer oil and the smoke parameter is the highest for lubricating grease. The potential of this type of work to design safer wind turbines under performance‐based approaches is clearly clarified.
Title: Flammability hazards of typical fuels used in wind turbine nacelle
Description:
SummaryThis study aims to develop a complete methodology for assessing flammability hazards of typical fuels (ie, transformer oil, hydraulic oil, gear oil, and lubricating grease) used in a wind turbine nacelle by combining different experimental techniques such as thermogravimetric analysis and cone calorimetry.
Pyrolysis properties (onset temperature, temperature of maximum mass loss rate, and mass residue) and reaction‐to‐fire properties (ignition time, heat release rate, mass loss rate, and smoke release rate) were determined and used for a preliminary assessment of thermal stability and flammability hazards.
Additional indices, for ignition and thermal behavior (effective heat of combustion, average smoke yield, and smoke point height, heat release capacity, fire hazard parameter, and smoke parameter, were calculated to provide a more advanced assessment of the hazards in a wind turbine.
Results show that pyrolysis of transformer oil, lubricating grease, hydraulic oil, and gear oil occur in the range of 150°C to 550°C.
Lubricating grease and transformer oil show the higher and lower thermal stabilities with maximum pyrolysis rate temperatures of 471°C and 282°C, respectively.
The measured relation between ignition time and radiant heat flux agrees well with Janssens method (a power of 0.
55).
The aforementioned indices appear to provide a reasonable prediction of performance under real fire conditions according to a full‐scale fire test documented by Declercq and Van Schevensteen.
The results of the study indicate that transformer oil is the easiest to ignite while lubricating grease is the most difficult to ignite but also has the highest smoke production rate; that transformer oil has the highest heat release rate while gear oil has the lowest; and that the fire hazard parameter is the highest for transformer oil and the smoke parameter is the highest for lubricating grease.
The potential of this type of work to design safer wind turbines under performance‐based approaches is clearly clarified.

Related Results

Design and Performance Analysis of Distributed Equal Angle Spiral Vertical Axis Wind Turbine
Design and Performance Analysis of Distributed Equal Angle Spiral Vertical Axis Wind Turbine
Background: The wind turbine is divided into a horizontal axis and a vertical axis depending on the relative positions of the rotating shaft and the ground. The advantage of the ch...
Analysis of Senegal Type Vertical Axis Wind Turbines Arrangement in Wind Farm
Analysis of Senegal Type Vertical Axis Wind Turbines Arrangement in Wind Farm
Background: In a wind farm, the wind speed of the downstream wind turbine will be lower than the wind speed of the upstream wind turbine due to the influence of the wake. Therefore...
Current Status and Prospects of Plant Flammability Measurements
Current Status and Prospects of Plant Flammability Measurements
In recent years, the frequency of wildfires worldwide has been gradually increasing, posing significant threats to global ecosystems and human society. Given that plants serve as t...
Vibration control of wind turbine tower-nacelle model with magnetorheological tuned vibration absorber
Vibration control of wind turbine tower-nacelle model with magnetorheological tuned vibration absorber
Wind turbine tower dynamic load is related to the fatigue and reliability of the structure. This paper deals with the problem of tower vibration control using specially designed an...
wLEACH: Real-Time Meteorological Data Based Wind LEACH
wLEACH: Real-Time Meteorological Data Based Wind LEACH
Introduction:Nowadays, Wireless Sensor Network (WSN) plays an important role in various fields. The limited power capability of the sensor nodes in the WSN brings constraints on th...
Influence of the Flexible Tower on Aeroelastic Loads of the Wind Turbine
Influence of the Flexible Tower on Aeroelastic Loads of the Wind Turbine
Based on the two-node Euler-Bernoulli beam, the tower system is discretized by finite element method, and the cubic Hermite polynomial is taken as the shape function of the beam el...
Study and Analysis of Adaptive PI Control for Pitch Angle on Wind Turbine System
Study and Analysis of Adaptive PI Control for Pitch Angle on Wind Turbine System
In the current work, a study is proposed using the engineering program MATLAB through computer tests of a simulation model for modifying the tilt angle in wind turbines, with a stu...
Wake Alleviating Devices for Offshore Wind Turbines
Wake Alleviating Devices for Offshore Wind Turbines
The wake behind an offshore wind turbine can persist for several turbine diameters, so decreasing the space between wind turbines in an array leads to strong wake-turbine interacti...

Back to Top