Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Fracture Toughness Characterization of 304L and 316L Austenitic Stainless Steels and Alloy 718 After Irradiation in High-Energy, Mixed Proton/Neutron Spectrum

View through CrossRef
This paper describes the fracture toughness characterization of annealed 304L and 316L stainless steels and precipitation hardened Alloy 718, performed at the Oak Ridge National Laboratory as a part of the experimental design and development for the Accelerator Production of Tritium (APT) target/blanket system. Materials were irradiated at 25 to 200°C by high-energy protons and neutrons from an 800-MeV, 1-mA proton beam at the Los Alamos Neutron Science Center (LANSCE). The proton flux produced in LANSCE is nearly prototypic of anticipated conditions for significant portions of the APT target/blanket system. The objective of this testing program was to determine the change in crack-extension resistance of candidate APT materials from irradiation at prototypic APT temperatures and proton and neutron fluxes. J-integral-resistance (J-R) curve toughness tests were conducted in general accordance with the American Society for Testing and Materials Standard Test Method for Measurement of Fracture Toughness, E 1820-99, with a computer-controlled test and data acquisition system. J-R curves were obtained from subsize disk-shaped compact tension specimens (12.5 mm in diameter) with thicknesses of 4 mm or 2 mm. Irradiation up to 12 dpa significantly reduced the fracture toughness of these materials. Alloy 718 had the lowest fracture toughness in both the unirradiated and irradiated conditions. All irradiated specimens of Alloy 718 failed by sudden unstable crack extension regardless of dose or test temperature. Type 304L and 316L stainless steels had a high level of fracture toughness in the unirradiated condition and exhibited reduction in fracture toughness to saturation levels of 65 to 100 MPa√m. The present reduction in fracture toughness is similar to changes reported from fission reactor studies. However, the currently observed losses in toughness appear to saturate at doses slightly lower than the dose required for saturation in reactor-irradiated steels. This difference might be attributed to the increased helium and hydrogen production associated with irradiation in the high-energy, mixed proton/neutron spectrum.
Title: Fracture Toughness Characterization of 304L and 316L Austenitic Stainless Steels and Alloy 718 After Irradiation in High-Energy, Mixed Proton/Neutron Spectrum
Description:
This paper describes the fracture toughness characterization of annealed 304L and 316L stainless steels and precipitation hardened Alloy 718, performed at the Oak Ridge National Laboratory as a part of the experimental design and development for the Accelerator Production of Tritium (APT) target/blanket system.
Materials were irradiated at 25 to 200°C by high-energy protons and neutrons from an 800-MeV, 1-mA proton beam at the Los Alamos Neutron Science Center (LANSCE).
The proton flux produced in LANSCE is nearly prototypic of anticipated conditions for significant portions of the APT target/blanket system.
The objective of this testing program was to determine the change in crack-extension resistance of candidate APT materials from irradiation at prototypic APT temperatures and proton and neutron fluxes.
J-integral-resistance (J-R) curve toughness tests were conducted in general accordance with the American Society for Testing and Materials Standard Test Method for Measurement of Fracture Toughness, E 1820-99, with a computer-controlled test and data acquisition system.
J-R curves were obtained from subsize disk-shaped compact tension specimens (12.
5 mm in diameter) with thicknesses of 4 mm or 2 mm.
Irradiation up to 12 dpa significantly reduced the fracture toughness of these materials.
Alloy 718 had the lowest fracture toughness in both the unirradiated and irradiated conditions.
All irradiated specimens of Alloy 718 failed by sudden unstable crack extension regardless of dose or test temperature.
Type 304L and 316L stainless steels had a high level of fracture toughness in the unirradiated condition and exhibited reduction in fracture toughness to saturation levels of 65 to 100 MPa√m.
The present reduction in fracture toughness is similar to changes reported from fission reactor studies.
However, the currently observed losses in toughness appear to saturate at doses slightly lower than the dose required for saturation in reactor-irradiated steels.
This difference might be attributed to the increased helium and hydrogen production associated with irradiation in the high-energy, mixed proton/neutron spectrum.

Related Results

Evaluating the Flaw Tolerance and Ductile Tearing Resistance of Austenitic Stainless Steel Welds
Evaluating the Flaw Tolerance and Ductile Tearing Resistance of Austenitic Stainless Steel Welds
Abstract In general, austenitic stainless steels behave in a more ductile than brittle manner and do not typically experience a ductile-to-brittle transition like ty...
Pragmatic Trends for Estimating Constraint Effects on Upper-Shelf Fracture Toughness for Pipe Flaw Evaluation
Pragmatic Trends for Estimating Constraint Effects on Upper-Shelf Fracture Toughness for Pipe Flaw Evaluation
Abstract During efforts for a PRCI project to assess the toughness for critical flaw size evaluations of vintage axially surface-cracked line-pipe steels for the DOT...
Study of coded source neutron imaging based on a compact accelerator
Study of coded source neutron imaging based on a compact accelerator
Compact accelerator based neutron source has lower cost and better flexibility than nuclear reactor. Neutron imaging using such a neutron source has attracted more and more attenti...
Linkage of Fracture Assessment Methodology With Fracture Toughness Testing Procedures
Linkage of Fracture Assessment Methodology With Fracture Toughness Testing Procedures
Abstract J-Integral, J, is a commonly accepted elastic-plastic fracture mechanics parameter defined as the amount of energy released per unit area of crack surface i...
Fracture Modelling Using Seismic Based Fracture Intensity Volume, a Case Study in Middle East
Fracture Modelling Using Seismic Based Fracture Intensity Volume, a Case Study in Middle East
Abstract In this paper, a case study in a fractured carbonate reservoir is presented to demonstrate the approach of fracture modeling using fracture intensity vol...
Features of the restructuring of ods steels with different nanostructures under irradiation
Features of the restructuring of ods steels with different nanostructures under irradiation
Nanoscale mechanisms of radiation hardening of oxide dispersion-strengthened (ODS) steels steels with different nanostructures, differing in the type of inclusions, their sizes and...
Corrosion Behavior of Stainless Steel in Chloride-Contaminated Carbonated Concrete
Corrosion Behavior of Stainless Steel in Chloride-Contaminated Carbonated Concrete
Abstract The use of chloride-contaminated raw materials can minimize the consumption of natural resources, e.g., fresh water and virgin rocks, in the production of c...

Back to Top