Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

A New Tool for Airborne Gravimetry Survey Simulation

View through CrossRef
Airborne gravimetry represents nowadays probably the most efficient technique to collect gravity observations close to the Earth’s surface. In the 1990s, thanks to the development of the Global Navigation Satellite Systems (GNSS), which has made accurate navigational data available, this technique started to spread worldwide because of its capability to provide measurements in a fast and cost-effective way. Differently from other techniques such as shipborne gravimetry, it has the advantage to provide gravity measurements also in challenging environments which can be difficult to access otherwise, like mountainous areas, rain forests and polar regions. For such reasons, airborne gravimetry is used for various applications related to the regional gravity field modelling: from the computation of high accurate local geoid for geodetic applications to geophysical ones, specifically related to oil and gas exploration activities or more in general for regional geological studies. Depending on the different kinds of application and the final required accuracy, the definition of the main characteristics of the airborne survey, e.g., the planar distance between consecutive flight tracks, the aircraft velocity, etc., can be a difficult task. In this work, we present a new software package, which would help in properly accomplishing the survey design task. Basically, the developed software solution allows for generating a realistic (from the observation noise point of view) gravimetric signal, and, after that, to predict the accuracy and spatial resolution of the final retrievable gravimetric field, in terms of gravity disturbances, given the flight main characteristics. The proposed procedure is suited for airborne survey planning in order to be able to optimize the design of the survey according to the required final accuracy. With the aim to evaluate the influence of the various survey parameters on the expected accuracy of the airborne survey, different numerical tests have been performed on simulated and real datasets. For instance, it has been shown that if the observation noise is not properly modeled in the data filtering step, the survey results degrade about 25%, while not acquiring control lines during the survey will basically reduce the final accuracy by a factor of two.
Title: A New Tool for Airborne Gravimetry Survey Simulation
Description:
Airborne gravimetry represents nowadays probably the most efficient technique to collect gravity observations close to the Earth’s surface.
In the 1990s, thanks to the development of the Global Navigation Satellite Systems (GNSS), which has made accurate navigational data available, this technique started to spread worldwide because of its capability to provide measurements in a fast and cost-effective way.
Differently from other techniques such as shipborne gravimetry, it has the advantage to provide gravity measurements also in challenging environments which can be difficult to access otherwise, like mountainous areas, rain forests and polar regions.
For such reasons, airborne gravimetry is used for various applications related to the regional gravity field modelling: from the computation of high accurate local geoid for geodetic applications to geophysical ones, specifically related to oil and gas exploration activities or more in general for regional geological studies.
Depending on the different kinds of application and the final required accuracy, the definition of the main characteristics of the airborne survey, e.
g.
, the planar distance between consecutive flight tracks, the aircraft velocity, etc.
, can be a difficult task.
In this work, we present a new software package, which would help in properly accomplishing the survey design task.
Basically, the developed software solution allows for generating a realistic (from the observation noise point of view) gravimetric signal, and, after that, to predict the accuracy and spatial resolution of the final retrievable gravimetric field, in terms of gravity disturbances, given the flight main characteristics.
The proposed procedure is suited for airborne survey planning in order to be able to optimize the design of the survey according to the required final accuracy.
With the aim to evaluate the influence of the various survey parameters on the expected accuracy of the airborne survey, different numerical tests have been performed on simulated and real datasets.
For instance, it has been shown that if the observation noise is not properly modeled in the data filtering step, the survey results degrade about 25%, while not acquiring control lines during the survey will basically reduce the final accuracy by a factor of two.

Related Results

Using spherical scaling functions in scalar and vector airborne gravimetry
Using spherical scaling functions in scalar and vector airborne gravimetry
<p>Airborne gravimetry is capable to provide Earth’s gravity data of high accuracy and spatial resolution for any area of interest, in particular for ha...
Satellite gravity validation by new airborne gravimetry in coastal regions of Antarctica and Norway
Satellite gravity validation by new airborne gravimetry in coastal regions of Antarctica and Norway
Airborne gravimetry provides gravity observations of higher spatial resolution than what can be obtained from satellite gravity field measurements, and together with terrestrial me...
Optimising tool wear and workpiece condition monitoring via cyber-physical systems for smart manufacturing
Optimising tool wear and workpiece condition monitoring via cyber-physical systems for smart manufacturing
Smart manufacturing has been developed since the introduction of Industry 4.0. It consists of resource sharing and networking, predictive engineering, and material and data analyti...
Effect and Prospect of Basic Geological Survey Based on Airborne Gravimetry in China
Effect and Prospect of Basic Geological Survey Based on Airborne Gravimetry in China
Abstract:The airborne gravimetry was an important leap and innovation in the world's history of geophysical exploration. China's first test of the airborne gravity geological surve...
Particle Based Model for Airborne Disease Transmission
Particle Based Model for Airborne Disease Transmission
Executive SummaryPrior literature documents cases of airborne infectious disease transmission at distances ranging from ≥ 2 m to inter-continental in scale. Physics- and biology- b...
Robot tool use: A survey
Robot tool use: A survey
Using human tools can significantly benefit robots in many application domains. Such ability would allow robots to solve problems that they were unable to without tools. However, r...
Scoping indoor airborne fungi in an excellent indoor air quality office building in Hong Kong
Scoping indoor airborne fungi in an excellent indoor air quality office building in Hong Kong
This study aims to investigate the differences in indoor airborne fungal exposure between a selective subset of air-conditioned offices within a building classified with excellent ...
Assessment of the TROPOMI tropospheric NO2 product based on recurrent airborne campaigns
Assessment of the TROPOMI tropospheric NO2 product based on recurrent airborne campaigns
<p>Sentinel-5 precursor (S-5p), launched on 13 October 2017, is the first mission of the Copernicus Programme dedicated to the monitoring of air quality, climate, ozo...

Back to Top