Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Bedding Effect on the Deformation: Damage Differentiation of Coal Mass

View through CrossRef
In order to reveal the mechanical properties and damage mechanism of coal with parallel multibedding under stress disturbance, the raw coal samples with parallel multibedding were selected. The uniaxial compression and acoustic emission damage measurement were carried out using the coal-rock mechanics damage coupling test system, revealing the bedding effect of coal deformation-damage failure differentiation under different loading methods; based on the test results, a coupling characterization model of mechanical damage of coal and rock with parallel multibedding is established. The results show that (a) the acoustic emission of raw coal samples under different loading modes has obvious differentiation characteristics of bedding effect. When the vertical bedding is loaded, the peak stress of raw coal samples is relatively high and the acoustic emission activity period is relatively long; when the parallel bedding is loaded, the active degree of acoustic emission is relatively strong, and there is an obvious mutation period after the acoustic emission enters the acute period. (b) Under different loading modes, the difference in the influence of bedding on the fracture evolution of raw coal specimens is mainly concentrated before the stress turning point. In stage I, the acoustic emission b value of raw coal specimens decreases first, then becomes stable under vertical bedding loading, and decreases under parallel bedding loading; in stages II and III, the acoustic emission b value of raw coal samples showed the same change trend under different loading modes. (c) Combined with the basic principle of continuous damage mechanics and based on the difference of bedding effect, the relationship between cumulative acoustic emission ringing count and stress and damage variable of the raw coal samples was established. The rationality and effectiveness of the model are verified by experiments.
Title: Bedding Effect on the Deformation: Damage Differentiation of Coal Mass
Description:
In order to reveal the mechanical properties and damage mechanism of coal with parallel multibedding under stress disturbance, the raw coal samples with parallel multibedding were selected.
The uniaxial compression and acoustic emission damage measurement were carried out using the coal-rock mechanics damage coupling test system, revealing the bedding effect of coal deformation-damage failure differentiation under different loading methods; based on the test results, a coupling characterization model of mechanical damage of coal and rock with parallel multibedding is established.
The results show that (a) the acoustic emission of raw coal samples under different loading modes has obvious differentiation characteristics of bedding effect.
When the vertical bedding is loaded, the peak stress of raw coal samples is relatively high and the acoustic emission activity period is relatively long; when the parallel bedding is loaded, the active degree of acoustic emission is relatively strong, and there is an obvious mutation period after the acoustic emission enters the acute period.
(b) Under different loading modes, the difference in the influence of bedding on the fracture evolution of raw coal specimens is mainly concentrated before the stress turning point.
In stage I, the acoustic emission b value of raw coal specimens decreases first, then becomes stable under vertical bedding loading, and decreases under parallel bedding loading; in stages II and III, the acoustic emission b value of raw coal samples showed the same change trend under different loading modes.
(c) Combined with the basic principle of continuous damage mechanics and based on the difference of bedding effect, the relationship between cumulative acoustic emission ringing count and stress and damage variable of the raw coal samples was established.
The rationality and effectiveness of the model are verified by experiments.

Related Results

Coal
Coal
AbstractCoal is an organic, combustible, rock‐like natural substance that occurs in various forms from hard and brittle anthracite to soft and friable lignite. Coal is sometimes cl...
Bedding Corridors as Migration Pathways in Abu Dhabi Fields
Bedding Corridors as Migration Pathways in Abu Dhabi Fields
Abstract Hydrocarbon migration pathways control the distribution of oil and gas in Abu Dhabi sedimentary basins and therefore it is one of the most important and con...
Study on Deformation and Fracture Evolution of Underground Reservoir Coal Pillar Dam under Different Mining Conditions
Study on Deformation and Fracture Evolution of Underground Reservoir Coal Pillar Dam under Different Mining Conditions
Coal mine underground reservoir water storage technology is an effective technical way to achieve high efficiency of coal mining and protection of water resources. The stability of...
Natural Frequency of Coal: Mathematical Model, Test, and Analysis on Influencing Factors
Natural Frequency of Coal: Mathematical Model, Test, and Analysis on Influencing Factors
The difficulty in enhancing the low permeability of deep coal seams is the key problem restricting gas extraction. The technology of coal rock resonance and permeability enhancemen...
Adaption of Theoretical Adsorption Model on Coal: Physical Structure
Adaption of Theoretical Adsorption Model on Coal: Physical Structure
With the motivation to investigate the role of coal physical structure on the adsorption performance of coal reservoir, 18 different types of coal samples with different coal struc...
On determining coal classification indicators for establishing dangerous properties of mines
On determining coal classification indicators for establishing dangerous properties of mines
Currently, more than 20 qualification indicators are known by which degree of metamorphic coal transformations are established. Most of these indicators are designed for determinin...
Analytical model of the deformation response of bedding slopes to excavation on the basis of Mindlin’s strain solution
Analytical model of the deformation response of bedding slopes to excavation on the basis of Mindlin’s strain solution
Abstract To reveal the deformation law and mechanism of bedding slopes under excavation unloading, an unloading rebound model of slope deformation is established on ...
The development of the market of qualified coal fuels in Poland
The development of the market of qualified coal fuels in Poland
Abstract The aim of this article is to discuss the changes that have been observed on the market of qualified coal fuels (the so-called eco-pea coal) over the last few years. T...

Back to Top