Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Evidence of Gapless Superfluidity in MXB 1659-29 With and Without Late Time Cooling

View through CrossRef
The interpretation of the thermal relaxation of some transiently accreting neutron stars in quasipersistent soft X-ray transients, especially MXB 1659-29, has been found to be challenging within the traditional deep crustal heating paradigm. Due to the pinning of quantized vortices, the neutron superfluid is not expected to remain at rest in the crust, as was generally assumed. We have recently shown that for sufficiently large relative superflows, the neutron superfluid could become gapless. This dynamical phase could naturally explain the late-time cooling of MXB 1659-29. However, the interpretation of the last observation of MXB 1659-29 in 2013 before its second accretion phase in 2015 remains debated, with some spectral fits being consistent with no further temperature decline. Here, we revisit the cooling of this neutron star considering the different fits. New simulations of the crust cooling are performed, accounting for neutron diffusion and allowing for gapless superfluidity. In all cases, gapless superfluidity is found to provide the best fit to observations.
Title: Evidence of Gapless Superfluidity in MXB 1659-29 With and Without Late Time Cooling
Description:
The interpretation of the thermal relaxation of some transiently accreting neutron stars in quasipersistent soft X-ray transients, especially MXB 1659-29, has been found to be challenging within the traditional deep crustal heating paradigm.
Due to the pinning of quantized vortices, the neutron superfluid is not expected to remain at rest in the crust, as was generally assumed.
We have recently shown that for sufficiently large relative superflows, the neutron superfluid could become gapless.
This dynamical phase could naturally explain the late-time cooling of MXB 1659-29.
However, the interpretation of the last observation of MXB 1659-29 in 2013 before its second accretion phase in 2015 remains debated, with some spectral fits being consistent with no further temperature decline.
Here, we revisit the cooling of this neutron star considering the different fits.
New simulations of the crust cooling are performed, accounting for neutron diffusion and allowing for gapless superfluidity.
In all cases, gapless superfluidity is found to provide the best fit to observations.

Related Results

Superfluidity in exciton bilayer systems : Josephson effect and collective modes as definitive identification-markers
Superfluidity in exciton bilayer systems : Josephson effect and collective modes as definitive identification-markers
This thesis explores superfluidity in exciton bilayer systems, semiconductor structures with two thin conducting layers, one doped with electrons and the other with holes, separate...
Do evidence summaries increase health policy‐makers' use of evidence from systematic reviews? A systematic review
Do evidence summaries increase health policy‐makers' use of evidence from systematic reviews? A systematic review
This review summarizes the evidence from six randomized controlled trials that judged the effectiveness of systematic review summaries on policymakers' decision making, or the most...
Enhancement of Film Cooling Effectiveness Using Dean Vortices
Enhancement of Film Cooling Effectiveness Using Dean Vortices
Abstract Film cooling technology is widely used in gas turbines. Improvement of gas turbine thermal efficiency, specific power and specific thrust can be achieved by...
Evaluating the Science to Inform the Physical Activity Guidelines for Americans Midcourse Report
Evaluating the Science to Inform the Physical Activity Guidelines for Americans Midcourse Report
Abstract The Physical Activity Guidelines for Americans (Guidelines) advises older adults to be as active as possible. Yet, despite the well documented benefits of physical a...
Impingement/Effusion Cooling With Low Coolant Mass Flow
Impingement/Effusion Cooling With Low Coolant Mass Flow
A low coolant mass flow impingement/effusion design for a low NOx combustor wall cooling application was predicted, using conjugate heat transfer (CHT) computational fluid dynamics...
Large Eddy Simulations on Fan Shaped Film Cooling Hole With Various Inlet Turbulence Generation Methods
Large Eddy Simulations on Fan Shaped Film Cooling Hole With Various Inlet Turbulence Generation Methods
Abstract Large eddy simulations on well-known 7-7-7 fan shaped cooling hole have been carried out. Film cooling methods are generally applied to high pressure turbin...
Combustor Effusion Cooling Multiparameter Aerothermal Numerical Analysis
Combustor Effusion Cooling Multiparameter Aerothermal Numerical Analysis
The solid temperature prediction is one of the most widespread type of modelization used in the industry. One reading this study might wonder why there would be readymade solutions...
Anomalous Magnetorheological Response for Carrageenan Magnetic Hydrogels Prepared by Natural Cooling
Anomalous Magnetorheological Response for Carrageenan Magnetic Hydrogels Prepared by Natural Cooling
The effect of cooling rate on the magnetorheological response was investigated for magnetic hydrogels consisting of carrageenan and carbonyl iron particles with a concentration of ...

Back to Top