Javascript must be enabled to continue!
Assembling Dacite in a Continental Subduction Zone: A Case Study of Tauhara Volcano
View through CrossRef
<p>Mount Tauhara is the largest dacitic volcanic complex of onshore New Zealand and comprises seven subaerial domes and associated lava and pyroclastic flows, with a total exposed volume of ca. 1 km3. The dacites have a complex petrography including quartz, plagioclase, amphibole, orthopyroxene, clinopyroxene, olivine and Fe‐Ti oxides and offer an excellent opportunity to investigate the processes and timescales involved in assembling dacitic magma bodies in a continental subduction zone with in situ and mineral specific analytical techniques. Whole rock major and trace element data and Pb isotopes ratios define linear relationships indicating that the dacites are generated by mixing of silicic and mafic magmas. Two groups of samples define separate mixing trends between four endmembers on the basis of La/Yb ratios, 87Sr/86Sr ratios and Sr contents. The older Western and Central Domes have low 87Sr/86Sr (0.7042‐0.7046) and high LREE/HREE (LaN/YbN = 8.0‐11.5) and Sr (380‐650 ppm) compared to the younger Hipaua, Trig M, Breached and Main Domes, which have higher 87Sr/86Sr (0.7047‐0.7052) and lower LREE/HREE (LaN/YbN = 6.5‐7.5) and Sr (180‐400 ppm). In situ mineral major and trace element chemistry of mineral phases, as well as Sr and Pb isotope ratios of mineral separates have been used to: (i) fingerprint the origin of each crystal phase; (ii) constrain the chemistry of the four endmembers involved in the mixing events and; (iii) estimate the timing of mixing relative to eruption and the ascent rate of the dacitic magmas. The presence of quartz and analyses of quartz‐hosted melt inclusions are used to fingerprint the chemistry of the silicic endmembers, which is a rhyolitic melt with a major element chemistry similar to that of either the Whakamaru Group Ignimbrite melts (Western, Central and Trig M Domes) or intermediate between that of the Whakamaru and the Oruanui Ignimbrite melts (Hipaua, Breached and Main Domes). Similarly, Ba‐Sr concentrations and Sr isotopic signatures of plagioclase show that this phenocryst phase also predominantly crystallized from the rhyolitic melt. Variations in the Mg# and trace element chemistry of clinopyroxenes suggest they were formed both in the mixed dacitic melts and in a mafic endmember. The chemistry of the mafic endmembers have been traced using a combination of back‐calculated Sr melt concentrations from clinopyroxene with the highest Mg# in each sample group, and the linear trends between whole rock SiO2 content and most elements. These results indicate that dacites erupted from the Western and Central Dome were generated by the mixing of a high alumina basalt and a rhyolitic melt and Trig M Dome dacites were generated by the mixing of an andesite with a rhyolitic melt. Magmas erupted from Hipaua, Breached and Main Domes were also produced by the mixing of an andesitic melt and a rhyolitic body with a composition intermediate between that of the Whakamaru and the Oruanui melt bodies. Trace element data and 87Sr/86Sr ratios of amphibole demonstrate that it crystallized from the mixed dacitic melt. Thermobarometric conditions obtained from amphibole indicate that the magma mixing event that produced the dacites occurred within a magma chamber located at ca. 9 km depth and ca. 900°C with the exception of Trig M Dome which occurred deeper at 13 km and 950°C. Diffusion profiles of Ti in quartz and Fe‐Mg in clinopyroxene indicate the magma mixing events occurred < 6 months prior to eruption. Amphibole reaction rims show the magma to have ascended over 2‐3 weeks for each dome, with the exception of Main Dome where reaction rims were not present in the amphibole, suggesting the ascent rate was faster than 0.2 m/s (< 6 hours).</p>
Title: Assembling Dacite in a Continental Subduction Zone: A Case Study of Tauhara Volcano
Description:
<p>Mount Tauhara is the largest dacitic volcanic complex of onshore New Zealand and comprises seven subaerial domes and associated lava and pyroclastic flows, with a total exposed volume of ca.
1 km3.
The dacites have a complex petrography including quartz, plagioclase, amphibole, orthopyroxene, clinopyroxene, olivine and Fe‐Ti oxides and offer an excellent opportunity to investigate the processes and timescales involved in assembling dacitic magma bodies in a continental subduction zone with in situ and mineral specific analytical techniques.
Whole rock major and trace element data and Pb isotopes ratios define linear relationships indicating that the dacites are generated by mixing of silicic and mafic magmas.
Two groups of samples define separate mixing trends between four endmembers on the basis of La/Yb ratios, 87Sr/86Sr ratios and Sr contents.
The older Western and Central Domes have low 87Sr/86Sr (0.
7042‐0.
7046) and high LREE/HREE (LaN/YbN = 8.
0‐11.
5) and Sr (380‐650 ppm) compared to the younger Hipaua, Trig M, Breached and Main Domes, which have higher 87Sr/86Sr (0.
7047‐0.
7052) and lower LREE/HREE (LaN/YbN = 6.
5‐7.
5) and Sr (180‐400 ppm).
In situ mineral major and trace element chemistry of mineral phases, as well as Sr and Pb isotope ratios of mineral separates have been used to: (i) fingerprint the origin of each crystal phase; (ii) constrain the chemistry of the four endmembers involved in the mixing events and; (iii) estimate the timing of mixing relative to eruption and the ascent rate of the dacitic magmas.
The presence of quartz and analyses of quartz‐hosted melt inclusions are used to fingerprint the chemistry of the silicic endmembers, which is a rhyolitic melt with a major element chemistry similar to that of either the Whakamaru Group Ignimbrite melts (Western, Central and Trig M Domes) or intermediate between that of the Whakamaru and the Oruanui Ignimbrite melts (Hipaua, Breached and Main Domes).
Similarly, Ba‐Sr concentrations and Sr isotopic signatures of plagioclase show that this phenocryst phase also predominantly crystallized from the rhyolitic melt.
Variations in the Mg# and trace element chemistry of clinopyroxenes suggest they were formed both in the mixed dacitic melts and in a mafic endmember.
The chemistry of the mafic endmembers have been traced using a combination of back‐calculated Sr melt concentrations from clinopyroxene with the highest Mg# in each sample group, and the linear trends between whole rock SiO2 content and most elements.
These results indicate that dacites erupted from the Western and Central Dome were generated by the mixing of a high alumina basalt and a rhyolitic melt and Trig M Dome dacites were generated by the mixing of an andesite with a rhyolitic melt.
Magmas erupted from Hipaua, Breached and Main Domes were also produced by the mixing of an andesitic melt and a rhyolitic body with a composition intermediate between that of the Whakamaru and the Oruanui melt bodies.
Trace element data and 87Sr/86Sr ratios of amphibole demonstrate that it crystallized from the mixed dacitic melt.
Thermobarometric conditions obtained from amphibole indicate that the magma mixing event that produced the dacites occurred within a magma chamber located at ca.
9 km depth and ca.
900°C with the exception of Trig M Dome which occurred deeper at 13 km and 950°C.
Diffusion profiles of Ti in quartz and Fe‐Mg in clinopyroxene indicate the magma mixing events occurred < 6 months prior to eruption.
Amphibole reaction rims show the magma to have ascended over 2‐3 weeks for each dome, with the exception of Main Dome where reaction rims were not present in the amphibole, suggesting the ascent rate was faster than 0.
2 m/s (< 6 hours).
</p>.
Related Results
Geodynamic modelling of continental subduction beneath oceanic lithosphere
Geodynamic modelling of continental subduction beneath oceanic lithosphere
Subduction of an oceanic plate beneath either an oceanic, or a continental, overriding plate requires two main conditions to occur in a steady state: i) a high enough subduction ra...
Hydatid Disease of The Brain Parenchyma: A Systematic Review
Hydatid Disease of The Brain Parenchyma: A Systematic Review
Abstarct
Introduction
Isolated brain hydatid disease (BHD) is an extremely rare form of echinococcosis. A prompt and timely diagnosis is a crucial step in disease management. This ...
2D Numerical modelling of continental subduction and synthetic obduction
2D Numerical modelling of continental subduction and synthetic obduction
Continental subduction beneath an overriding oceanic plate is known to occur in nature, following the arrival of a continental margin at an intra-oceanic subduction zone, and often...
Lithic Inclusions in the Taupo Pumice Formation
Lithic Inclusions in the Taupo Pumice Formation
<p>The Taupo Pumice Formation is a product of the Taupo eruption of about 1800a, and consists of three phreatomagmatic ash deposits, two plinian pumice deposits and a major l...
The 2020 Activity of Kamchatkan Volcanoes and Danger to Aviation
The 2020 Activity of Kamchatkan Volcanoes and Danger to Aviation
<p>Strong explosive eruptions of volcanoes are the most dangerous for aircraft because they can produce in a few hours or days to the atmosphere and the stratosphere ...
Comparison of Seismicity Between the Subduction Zone and Local Fault Zone in the Bali Island Region During the 1963–2023 Period Using the Likelihood Method
Comparison of Seismicity Between the Subduction Zone and Local Fault Zone in the Bali Island Region During the 1963–2023 Period Using the Likelihood Method
Research has been conducted on the comparison of seismicity between the subduction zone and the local fault zone in the Bali Island region during the 1963–2023 period. This researc...
Journey of the Insular micro-continent through accretionary, collisional and translational regimes in the North American Cordillera since 170 Ma: a tomotectonic case study.
Journey of the Insular micro-continent through accretionary, collisional and translational regimes in the North American Cordillera since 170 Ma: a tomotectonic case study.
Tomotectonics hindcasts paleo-trenches, through the spatiotemporal superposition of subducted lithosphere (slabs imaged in the earth’s mantle) with plate reconstructions ...
Tracing hotspot traces in the Andes
Tracing hotspot traces in the Andes
Two segments of subduction of the Nazca plate beneath the South American plate occur at low angles based on seismic hypocenter locations, approaching nearly horizontal below ~100 k...

