Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Transcriptomic analysis of nitrogen metabolism pathways in Klebsiella aerogenes under nitrogen-rich conditions

View through CrossRef
The acceleration of the nitrogen cycle and the nitrogen excess observed in some coastal waters has increased interest into understanding the biochemical and molecular basis of nitrogen metabolism in various microorganisms. To investigate nitrogen metabolism of a novel heterotrophic nitrification and aerobic denitrification bacterium Klebsiella aerogenes strain (B23) under nitrogen-rich conditions, we conducted physiological and transcriptomic high-throughput sequencing analyses on strain B23 cultured on potassium nitrate–free or potassium nitrate–rich media. Overall, K. aerogenes B23 assimilated 82.47% of the nitrate present into cellular nitrogen. Further, 1,195 differentially expressed genes were observed between K. aerogenes B23 cultured on potassium nitrate–free media and those cultured on potassium nitrate-rich media. Gene annotation and metabolic pathway analysis of the transcriptome were performed using a series of bioinformatics tools, including Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Non-Redundant Protein Database annotation. Accordingly, the nitrogen metabolism pathway of K. aerogenes B23 was analyzed; overall, 39 genes were determined to be involved in this pathway. Differential expression analysis of the genes involved in the nitrogen metabolism pathway demonstrated that, compared to the control, FNR, NarK/14945, fdx, gshA, proB, proA, gapA, argH, artQ, artJ, artM, ArgR, GAT1, prmB, pyrG, glnS, and Ca1 were significantly upregulated in the nitrogen-treated K. aerogenes B23; these genes have been established to be involved in the regulation of nitrate, arginine, glutamate, and ammonia assimilation. Further, norV, norR, and narI were also upregulated in nitrogen-treated K. aerogenes B23; these genes are involved in the regulation of NO metabolism. These differential expression results are important for understanding the regulation process of key nitrogen metabolism enzyme genes in K. aerogenes B23. Therefore, this study establishes a solid foundation for further research into the expression regulation patterns of nitrogen metabolism–associated genes in K. aerogenes B23 under nitrogen-rich conditions; moreover, this research provides essential insight into how K. aerogenes B23 utilizes nutritional elements.
Title: Transcriptomic analysis of nitrogen metabolism pathways in Klebsiella aerogenes under nitrogen-rich conditions
Description:
The acceleration of the nitrogen cycle and the nitrogen excess observed in some coastal waters has increased interest into understanding the biochemical and molecular basis of nitrogen metabolism in various microorganisms.
To investigate nitrogen metabolism of a novel heterotrophic nitrification and aerobic denitrification bacterium Klebsiella aerogenes strain (B23) under nitrogen-rich conditions, we conducted physiological and transcriptomic high-throughput sequencing analyses on strain B23 cultured on potassium nitrate–free or potassium nitrate–rich media.
Overall, K.
aerogenes B23 assimilated 82.
47% of the nitrate present into cellular nitrogen.
Further, 1,195 differentially expressed genes were observed between K.
aerogenes B23 cultured on potassium nitrate–free media and those cultured on potassium nitrate-rich media.
Gene annotation and metabolic pathway analysis of the transcriptome were performed using a series of bioinformatics tools, including Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Non-Redundant Protein Database annotation.
Accordingly, the nitrogen metabolism pathway of K.
aerogenes B23 was analyzed; overall, 39 genes were determined to be involved in this pathway.
Differential expression analysis of the genes involved in the nitrogen metabolism pathway demonstrated that, compared to the control, FNR, NarK/14945, fdx, gshA, proB, proA, gapA, argH, artQ, artJ, artM, ArgR, GAT1, prmB, pyrG, glnS, and Ca1 were significantly upregulated in the nitrogen-treated K.
aerogenes B23; these genes have been established to be involved in the regulation of nitrate, arginine, glutamate, and ammonia assimilation.
Further, norV, norR, and narI were also upregulated in nitrogen-treated K.
aerogenes B23; these genes are involved in the regulation of NO metabolism.
These differential expression results are important for understanding the regulation process of key nitrogen metabolism enzyme genes in K.
aerogenes B23.
Therefore, this study establishes a solid foundation for further research into the expression regulation patterns of nitrogen metabolism–associated genes in K.
aerogenes B23 under nitrogen-rich conditions; moreover, this research provides essential insight into how K.
aerogenes B23 utilizes nutritional elements.

Related Results

Screening of differentially expressed miRNAs and target genes in two potato varieties under nitrogen stress
Screening of differentially expressed miRNAs and target genes in two potato varieties under nitrogen stress
Abstract Background: Nitrogen is an important element for potato growth and development, and improving nitrogen utilization efficiency is an effective way to reduce the amo...
Evolution of Antimicrobial Resistance in Community vs. Hospital-Acquired Infections
Evolution of Antimicrobial Resistance in Community vs. Hospital-Acquired Infections
Abstract Introduction Hospitals are high-risk environments for infections. Despite the global recognition of these pathogens, few studies compare microorganisms from community-acqu...
Detection of Antibiotic Resistance and Virulence Factors of Klebsiella Species
Detection of Antibiotic Resistance and Virulence Factors of Klebsiella Species
Klebsiella species is a common cause of hospital acquired infections (HAIs) and more antibiotic resistance patterns seen in this species. The purpose of this study was to identify ...
Study on non-targeted metabolomics of intestinal tract of DEV- infected ducks
Study on non-targeted metabolomics of intestinal tract of DEV- infected ducks
Abstract Introduction Duck enteritis virus (DEV) mainly causes infectious diseases characterized by intestinal hemorrhage, inflammation and parenchymal organ degeneration i...
Untargeted metabolomics of the intestinal tract of DEV-infected ducks
Untargeted metabolomics of the intestinal tract of DEV-infected ducks
Abstract Introduction Duck enteritis virus (DEV) mainly causes infectious diseases characterized by intestinal haemorrhage, inflammation and parench...
The Ability Of Klebsiella Pneumonia And Klebsiella Oxytoca To Degrade Oil Waste
The Ability Of Klebsiella Pneumonia And Klebsiella Oxytoca To Degrade Oil Waste
Crude oil contamination is one of the major environmental problems, it generated processing water pollution by hydrocarbon. Microorganisms have been used to remove or reduce the ef...
Transcriptome Analysis of Walnut Seedling Roots Under Nitrogen Starvation and Excess Nitrogen Stress
Transcriptome Analysis of Walnut Seedling Roots Under Nitrogen Starvation and Excess Nitrogen Stress
Abstract Nitrogen is an essential core element in walnut seedling growth and development. However, nitrogen starvation and excessive nitrogen stress can cause stunted growt...

Back to Top