Javascript must be enabled to continue!
S-Nitrosation of E3 Ubiquitin Ligase Complex Components Regulates Hormonal Signalings in Arabidopsis
View through CrossRef
E3 ubiquitin ligases mediate the last step of the ubiquitination pathway in the ubiquitin-proteasome system (UPS). By targeting transcriptional regulators for their turnover, E3s play a crucial role in every aspect of plant biology. In plants, SKP1/CULLIN1/F-BOX PROTEIN (SCF)-type E3 ubiquitin ligases are essential for the perception and signaling of several key hormones including auxins and jasmonates (JAs). F-box proteins, TRANSPORT INHIBITOR RESPONSE 1 (TIR1) and CORONATINE INSENSITIVE 1 (COI1), bind directly transcriptional repressors AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA) and JASMONATE ZIM-DOMAIN (JAZ) in auxin- and JAs-depending manner, respectively, which permits the perception of the hormones and transcriptional activation of signaling pathways. Redox modification of proteins mainly by S-nitrosation of cysteines (Cys) residues via nitric oxide (NO) has emerged as a valued regulatory mechanism in physiological processes requiring its rapid and versatile integration. Previously, we demonstrated that TIR1 and Arabidopsis thaliana SKP1 (ASK1) are targets of S-nitrosation, and these NO-dependent posttranslational modifications enhance protein-protein interactions and positively regulate SCFTIR1 complex assembly and expression of auxin response genes. In this work, we confirmed S-nitrosation of Cys140 in TIR1, which was associated in planta to auxin-dependent developmental and stress-associated responses. In addition, we provide evidence on the modulation of the SCFCOI1 complex by different S-nitrosation events. We demonstrated that S-nitrosation of ASK1 Cys118 enhanced ASK1-COI1 protein-protein interaction. Overexpression of non-nitrosable ask1 mutant protein impaired the activation of JA-responsive genes mediated by SCFCOI1 illustrating the functional relevance of this redox-mediated regulation in planta. In silico analysis positions COI1 as a promising S-nitrosation target, and demonstrated that plants treated with methyl JA (MeJA) or S-nitrosocysteine (NO-Cys, S-nitrosation agent) develop shared responses at a genome-wide level. The regulation of SCF components involved in hormonal perception by S-nitrosation may represent a key strategy to determine the precise time and site-dependent activation of each hormonal signaling pathway and highlights NO as a pivotal molecular player in these scenarios.
Frontiers Media SA
Title: S-Nitrosation of E3 Ubiquitin Ligase Complex Components Regulates Hormonal Signalings in Arabidopsis
Description:
E3 ubiquitin ligases mediate the last step of the ubiquitination pathway in the ubiquitin-proteasome system (UPS).
By targeting transcriptional regulators for their turnover, E3s play a crucial role in every aspect of plant biology.
In plants, SKP1/CULLIN1/F-BOX PROTEIN (SCF)-type E3 ubiquitin ligases are essential for the perception and signaling of several key hormones including auxins and jasmonates (JAs).
F-box proteins, TRANSPORT INHIBITOR RESPONSE 1 (TIR1) and CORONATINE INSENSITIVE 1 (COI1), bind directly transcriptional repressors AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA) and JASMONATE ZIM-DOMAIN (JAZ) in auxin- and JAs-depending manner, respectively, which permits the perception of the hormones and transcriptional activation of signaling pathways.
Redox modification of proteins mainly by S-nitrosation of cysteines (Cys) residues via nitric oxide (NO) has emerged as a valued regulatory mechanism in physiological processes requiring its rapid and versatile integration.
Previously, we demonstrated that TIR1 and Arabidopsis thaliana SKP1 (ASK1) are targets of S-nitrosation, and these NO-dependent posttranslational modifications enhance protein-protein interactions and positively regulate SCFTIR1 complex assembly and expression of auxin response genes.
In this work, we confirmed S-nitrosation of Cys140 in TIR1, which was associated in planta to auxin-dependent developmental and stress-associated responses.
In addition, we provide evidence on the modulation of the SCFCOI1 complex by different S-nitrosation events.
We demonstrated that S-nitrosation of ASK1 Cys118 enhanced ASK1-COI1 protein-protein interaction.
Overexpression of non-nitrosable ask1 mutant protein impaired the activation of JA-responsive genes mediated by SCFCOI1 illustrating the functional relevance of this redox-mediated regulation in planta.
In silico analysis positions COI1 as a promising S-nitrosation target, and demonstrated that plants treated with methyl JA (MeJA) or S-nitrosocysteine (NO-Cys, S-nitrosation agent) develop shared responses at a genome-wide level.
The regulation of SCF components involved in hormonal perception by S-nitrosation may represent a key strategy to determine the precise time and site-dependent activation of each hormonal signaling pathway and highlights NO as a pivotal molecular player in these scenarios.
Related Results
Triad1 Regulates Myelopoiesis through Different Ubiquitin Ligase Activities.
Triad1 Regulates Myelopoiesis through Different Ubiquitin Ligase Activities.
Abstract
The modification of cellular proteins with poly-ubiquitin chains plays an essential role in hematopoiesis. Different types of ubiquitin chains may have oppo...
Ubiquitin and Ubiquitin‐like Protein Conjugation
Ubiquitin and Ubiquitin‐like Protein Conjugation
Abstract
Protein modification by ubiquitin and ubiquitin‐like proteins (Ubls) plays a pervasive role in eukaryotic cell regulation. One aim of this article is to survey t...
Abstract 2728: Correlation of p62/ubiquitin IHC expression with clinicopathologic outcome in gastrointestinal carcinomas
Abstract 2728: Correlation of p62/ubiquitin IHC expression with clinicopathologic outcome in gastrointestinal carcinomas
Abstract
Background:P62 and ubiquitin are small regulatory proteins demonstrated to have implications in the prognosis and survival of various malignancies including...
The Ubiquitin E3 Ligase PRU2 Modulates Phosphate Uptake in Arabidopsis
The Ubiquitin E3 Ligase PRU2 Modulates Phosphate Uptake in Arabidopsis
Phosphorus is an essential macronutrient for plants. The phosphate (Pi) concentration in soil solutions is typically low, and plants always suffer from low-Pi stress. During Pi sta...
Cullin-RING Ubiquitin Ligases in Neurodevelopment and Neurodevelopmental Disorders
Cullin-RING Ubiquitin Ligases in Neurodevelopment and Neurodevelopmental Disorders
Ubiquitination is dynamic and tightly regulated post-translational modifications essential for modulating protein stability, trafficking, and function to preserve cellular homeosta...
Cullin-RING Ubiquitin Ligases in Neurodevelopment and Neurodevelopmental Disorders
Cullin-RING Ubiquitin Ligases in Neurodevelopment and Neurodevelopmental Disorders
Ubiquitination is a dynamic and tightly regulated post-translational modification essential for modulating protein stability, trafficking, and function to preserve cellular homeost...
Gfi1 Protein Turnover Is Regulated by the Ubiquitin Ligase Triad1.
Gfi1 Protein Turnover Is Regulated by the Ubiquitin Ligase Triad1.
Abstract
The transcriptional repressor Growth factor independence-1 (Gfi1) plays an essential role during various stages of hematopoiesis. It is crucial for the self...
Mass spectrometry techniques for studying the ubiquitin system
Mass spectrometry techniques for studying the ubiquitin system
Post-translational control of proteins through covalent attachment of ubiquitin plays important roles in all eukaryotic cell functions. The ubiquitin system in humans consists of 2...

