Javascript must be enabled to continue!
An Evaluation Framework for Privacy-Preserving Record Linkage
View through CrossRef
Privacy-preserving record linkage (PPRL) addresses the problem of identifying matching records from different databases that correspond to the same real-world entities using quasi-identifying attributes (in the absence of unique entity identifiers), while preserving privacy of these entities. Privacy is being preserved by not revealing any information that could be used to infer the actual values about the records that are not reconciled to the same entity (non-matches), and any confidential or sensitive information (that is not agreed upon by the data custodians) about the records that were reconciled to the same entity (matches) during or after the linkage process. The PPRL process often involves three main challenges, which are scalability to large databases, high linkage quality in the presence of data quality errors, and sufficient privacy guarantees. While many solutions have been developed for the PPRL problem over the past two decades, an evaluation and comparison framework of PPRL solutions with standard numerical measures defined for all three properties (scalability, linkage quality, and privacy) of PPRL has so far not been presented in the literature. We propose a general framework with normalized measures to practically evaluate and compare PPRL solutions in the face of linkage attack methods that are based on an external global dataset. We conducted experiments of several existing PPRL solutions on real-world databases using our proposed evaluation framework, and the results show that our framework provides an extensive and comparative evaluation of PPRL solutions in terms of the three properties.
Journal of Privacy and Confidentiality
Title: An Evaluation Framework for Privacy-Preserving Record Linkage
Description:
Privacy-preserving record linkage (PPRL) addresses the problem of identifying matching records from different databases that correspond to the same real-world entities using quasi-identifying attributes (in the absence of unique entity identifiers), while preserving privacy of these entities.
Privacy is being preserved by not revealing any information that could be used to infer the actual values about the records that are not reconciled to the same entity (non-matches), and any confidential or sensitive information (that is not agreed upon by the data custodians) about the records that were reconciled to the same entity (matches) during or after the linkage process.
The PPRL process often involves three main challenges, which are scalability to large databases, high linkage quality in the presence of data quality errors, and sufficient privacy guarantees.
While many solutions have been developed for the PPRL problem over the past two decades, an evaluation and comparison framework of PPRL solutions with standard numerical measures defined for all three properties (scalability, linkage quality, and privacy) of PPRL has so far not been presented in the literature.
We propose a general framework with normalized measures to practically evaluate and compare PPRL solutions in the face of linkage attack methods that are based on an external global dataset.
We conducted experiments of several existing PPRL solutions on real-world databases using our proposed evaluation framework, and the results show that our framework provides an extensive and comparative evaluation of PPRL solutions in terms of the three properties.
Related Results
Augmented Differential Privacy Framework for Data Analytics
Augmented Differential Privacy Framework for Data Analytics
Abstract
Differential privacy has emerged as a popular privacy framework for providing privacy preserving noisy query answers based on statistical properties of databases. ...
Linking Sensitive Data – Applications, Techniques, and Challenges
Linking Sensitive Data – Applications, Techniques, and Challenges
IntroductionThe linking of sensitive databases containing personal identifying information across organisations is an increasingly important task in application domains ranging fro...
Evaluation measure for group-based record linkage
Evaluation measure for group-based record linkage
Introduction The robustness of record linkage evaluation measures is of high importance since linkage techniques are assessed based on these. However, minimal research has been con...
Federated Data Linkage in Practice
Federated Data Linkage in Practice
In recent years, great strides have been made towards the deployment of federated systems for data research, including exploring federated trusted research environments (TREs). The...
Privacy Risk in Recommender Systems
Privacy Risk in Recommender Systems
Nowadays, recommender systems are mostly used in many online applications to filter information and help users in selecting their relevant requirements. It avoids users to become o...
Privacy Attack on Multiple Dynamic Match-key based Privacy-Preserving Record Linkage
Privacy Attack on Multiple Dynamic Match-key based Privacy-Preserving Record Linkage
Introduction
Over the last decade, the demand for linking records about people across databases has increased in various domains. Privacy challenges associated with linking sensit...
Taxonomy of Attacks on Privacy-Preserving Record Linkage
Taxonomy of Attacks on Privacy-Preserving Record Linkage
Record linkage is the process of identifying records that corresponds to the same real-world entities across different databases. Due to the absence of unique entity identifiers, r...
THE SECURITY AND PRIVACY MEASURING SYSTEM FOR THE INTERNET OF THINGS DEVICES
THE SECURITY AND PRIVACY MEASURING SYSTEM FOR THE INTERNET OF THINGS DEVICES
The purpose of the article: elimination of the gap in existing need in the set of clear and objective security and privacy metrics for the IoT devices users and manufacturers and a...

