Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Universal model for electron thermal-field emission from two-dimensional semimetals

View through CrossRef
We present the theory of out-of-plane (or vertical) electron thermal-field emission from two-dimensional (2D) semimetals. We show that the current–voltage–temperature characteristic is well captured by a universal scaling relation applicable for broad classes of 2D semimetals, including graphene and its few-layer, nodal point semimetal, Dirac semimetal at the verge of topological phase transition, and nodal line semimetal. Here, an important consequence of the universal emission behavior is revealed: In contrast to the common expectation that band topology shall manifest differently in the physical observables, band topologies in two spatial dimension are indistinguishable from each other and bear no special signature in electron emission characteristics. Our findings represent the quantum extension of the universal semiclassical thermionic emission scaling law in 2D materials and provide theoretical foundations for the understanding of electron emission from cathode and charge interface transport for the design of 2D-material-based vacuum nanoelectronics.
Title: Universal model for electron thermal-field emission from two-dimensional semimetals
Description:
We present the theory of out-of-plane (or vertical) electron thermal-field emission from two-dimensional (2D) semimetals.
We show that the current–voltage–temperature characteristic is well captured by a universal scaling relation applicable for broad classes of 2D semimetals, including graphene and its few-layer, nodal point semimetal, Dirac semimetal at the verge of topological phase transition, and nodal line semimetal.
Here, an important consequence of the universal emission behavior is revealed: In contrast to the common expectation that band topology shall manifest differently in the physical observables, band topologies in two spatial dimension are indistinguishable from each other and bear no special signature in electron emission characteristics.
Our findings represent the quantum extension of the universal semiclassical thermionic emission scaling law in 2D materials and provide theoretical foundations for the understanding of electron emission from cathode and charge interface transport for the design of 2D-material-based vacuum nanoelectronics.

Related Results

Near-Surface Properties of Europa Constrained by the Galileo PPR Measurements 
Near-Surface Properties of Europa Constrained by the Galileo PPR Measurements 
NASA's Europa Clipper mission will characterize the current and recent surface activity of the icy-moon Europa through a wide range of remote sensing observations. In particular, t...
Investigating Iapetus' dichotomy with multi-wavelength microwave observations
Investigating Iapetus' dichotomy with multi-wavelength microwave observations
Indubitably, the most dramatic albedo hemispheric dichotomy in the Solar system occurs at Iapetus. Its leading (L) side is covered by an optically low-albedo material, contrasting ...
Nonreciprocal photonic spin Hall effect of magnetic Weyl semimetals
Nonreciprocal photonic spin Hall effect of magnetic Weyl semimetals
Magnetic Weyl semimetals allow the unique opportunities for the realizations of nonreciprocal optical properties, thermal radiation, and anomalous photon thermal Hall effect withou...
Field-emission current densities of carbon nanotube under the different electric fields
Field-emission current densities of carbon nanotube under the different electric fields
The field emission current variation law of carbon nanotube in a large electric field range (0-32 V m-1) is analyzed in depth by combining the density functional theory with metal ...
Variable Thermal Conductivity Metamaterials Applied to Passive Thermal Control of Satellites
Variable Thermal Conductivity Metamaterials Applied to Passive Thermal Control of Satellites
Abstract Active materials like the proposed variable thermal conductivity metamaterial enable new thermal designs and low-cost, low-power, passive thermal control. T...
Effect of wall secondary electron distribution function on the characteristics of stable sheath near a dielectric wall
Effect of wall secondary electron distribution function on the characteristics of stable sheath near a dielectric wall
It is widely known that the energy distribution of secondary electrons induced by a single-energy electron beam presents typical bimodal configuration. However, the total velocity ...
Interfacial thermal conductance of gallium nitride/graphene/diamond heterostructure based on molecular dynamics simulation
Interfacial thermal conductance of gallium nitride/graphene/diamond heterostructure based on molecular dynamics simulation
<sec>Gallium nitride chips are widely used in high-frequency and high-power devices. However, thermal management is a serious challenge for gallium nitride devices. To improv...
Superconductivity in Weyl semimetals with time reversal symmetry
Superconductivity in Weyl semimetals with time reversal symmetry
Abstract This theoretical study delves into the superconducting traits of Weyl semimetals that possess time reversal symmetry, utilizing the Bogoliubov–de Gennes equ...

Back to Top