Javascript must be enabled to continue!
Glutamine modulates stress granule formation in cancer cells through core RNA-binding proteins
View through CrossRef
ABSTRACT
Cytoplasmic stress granules (SGs) induced by various stresses have been linked to cancer and other disorders. Which active energy pathways are required for SG formation remains unclear. We used nutrient deprivation to show that glutamine is the sole amino acid source governing whether cancer cells form SGs. Metabolic profiling revealed the essential functions of glutamine and glucose in SG formation under limiting metabolic conditions. Providing glutamine during metabolic stress restored ATP levels in cancer cells and revived many essential gene expression patterns. MYC, a known regulator of the shift between glucose and glutamine metabolism, showed increased expression as cells moved to glutamine uptake. Inhibition of MYC prevented SG formation even with glutamine present and increased cell death after arsenite exposure. The RNA-binding proteins G3BP1 and G3BP2 (collectively G3BP1/2) were required for glutamine utilization, with G3BP1/2-knockout cells displaying a heavier reliance on glucose, yielding reduced cell survival and an inability to properly utilize glutamine. Altogether, we show that cancer cells require glutamine for SG formation under nutrient deprivation, and its absence reduces cell survival, lowering ATP levels below an energy threshold required for SG formation.
Title: Glutamine modulates stress granule formation in cancer cells through core RNA-binding proteins
Description:
ABSTRACT
Cytoplasmic stress granules (SGs) induced by various stresses have been linked to cancer and other disorders.
Which active energy pathways are required for SG formation remains unclear.
We used nutrient deprivation to show that glutamine is the sole amino acid source governing whether cancer cells form SGs.
Metabolic profiling revealed the essential functions of glutamine and glucose in SG formation under limiting metabolic conditions.
Providing glutamine during metabolic stress restored ATP levels in cancer cells and revived many essential gene expression patterns.
MYC, a known regulator of the shift between glucose and glutamine metabolism, showed increased expression as cells moved to glutamine uptake.
Inhibition of MYC prevented SG formation even with glutamine present and increased cell death after arsenite exposure.
The RNA-binding proteins G3BP1 and G3BP2 (collectively G3BP1/2) were required for glutamine utilization, with G3BP1/2-knockout cells displaying a heavier reliance on glucose, yielding reduced cell survival and an inability to properly utilize glutamine.
Altogether, we show that cancer cells require glutamine for SG formation under nutrient deprivation, and its absence reduces cell survival, lowering ATP levels below an energy threshold required for SG formation.
Related Results
Abstract 1508: Therapy resistant cancer cells containing stress granules display signatures of oxidative stress
Abstract 1508: Therapy resistant cancer cells containing stress granules display signatures of oxidative stress
Abstract
Understanding and overcoming therapy resistance in cancer is crucial, as it remains a major driver of lethality. We have shown that following chemotherapy, ...
Abstract 985: Mitochondrial glutamine fermentation enhances ATP synthesis in murine glioblastoma cells
Abstract 985: Mitochondrial glutamine fermentation enhances ATP synthesis in murine glioblastoma cells
Abstract
Otto Warburg first proposed that all cancer cells arise from irreversible impairment of respiration, thus requiring glucose fermentation as a compensatory e...
Abstract 1872: Targeting MYC-driven medulloblastoma using inhibitors of glutamine metabolism.
Abstract 1872: Targeting MYC-driven medulloblastoma using inhibitors of glutamine metabolism.
Abstract
Medulloblastoma is the most common malignant brain tumor in children. Currently, treatment consists of surgical resection, chemotherapy, and whole brain and...
Accurate in silico predictions of modified RNA interactions to a prototypical RNA-binding protein with λ-dynamics
Accurate in silico predictions of modified RNA interactions to a prototypical RNA-binding protein with λ-dynamics
RNA-binding proteins shape biology through their widespread functions in RNA biochemistry. Their function requires the recognition of specific RNA motifs for targeted binding. Thes...
Accurate in silico predictions of modified RNA interactions to a prototypical RNA-binding protein with λ-dynamics
Accurate in silico predictions of modified RNA interactions to a prototypical RNA-binding protein with λ-dynamics
RNA-binding proteins shape biology through their widespread functions in RNA biochemistry. Their function requires the recognition of specific RNA motifs for targeted binding. Thes...
Abstract 1490: Elucidating the effect of glutamine metabolism in breast to bone metastasis
Abstract 1490: Elucidating the effect of glutamine metabolism in breast to bone metastasis
Abstract
Bone-metastatic lesions will develop in approximately 65-75% of patients with metastatic breast cancer and are associated with high morbidity and mortality....
MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing v1
MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing v1
Human tissues comprise trillions of cells that populate a complex space of molecular phenotypes and functions and that vary in abundance by 4–9 orders of magnitude. Relying solely ...
Modulation of RNA condensation by the DEAD-box protein eIF4A
Modulation of RNA condensation by the DEAD-box protein eIF4A
SUMMARYStress granules are condensates of non-translating mRNAs and proteins involved in the stress response and neurodegenerative diseases. Stress granules form in part through in...

