Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Self-sustained green neuromorphic interfaces

View through CrossRef
AbstractIncorporating neuromorphic electronics in bioelectronic interfaces can provide intelligent responsiveness to environments. However, the signal mismatch between the environmental stimuli and driving amplitude in neuromorphic devices has limited the functional versatility and energy sustainability. Here we demonstrate multifunctional, self-sustained neuromorphic interfaces by achieving signal matching at the biological level. The advances rely on the unique properties of microbially produced protein nanowires, which enable both bio-amplitude (e.g., <100 mV) signal processing and energy harvesting from ambient humidity. Integrating protein nanowire-based sensors, energy devices and memristors of bio-amplitude functions yields flexible, self-powered neuromorphic interfaces that can intelligently interpret biologically relevant stimuli for smart responses. These features, coupled with the fact that protein nanowires are a green biomaterial of potential diverse functionalities, take the interfaces a step closer to biological integration.
Title: Self-sustained green neuromorphic interfaces
Description:
AbstractIncorporating neuromorphic electronics in bioelectronic interfaces can provide intelligent responsiveness to environments.
However, the signal mismatch between the environmental stimuli and driving amplitude in neuromorphic devices has limited the functional versatility and energy sustainability.
Here we demonstrate multifunctional, self-sustained neuromorphic interfaces by achieving signal matching at the biological level.
The advances rely on the unique properties of microbially produced protein nanowires, which enable both bio-amplitude (e.
g.
, <100 mV) signal processing and energy harvesting from ambient humidity.
Integrating protein nanowire-based sensors, energy devices and memristors of bio-amplitude functions yields flexible, self-powered neuromorphic interfaces that can intelligently interpret biologically relevant stimuli for smart responses.
These features, coupled with the fact that protein nanowires are a green biomaterial of potential diverse functionalities, take the interfaces a step closer to biological integration.

Related Results

Robust analogue neuromorphic hardware networks using intrinsic physics-adaptive learning
Robust analogue neuromorphic hardware networks using intrinsic physics-adaptive learning
Abstract Analogue neuromorphic computing hardware is highly energy-efficient and has been regarded as one of the most promising technologies for advancing artificial intell...
[RETRACTED] Green Dolphin CBD Gummies - Reduce anxiety with improved better sleepless - Tincture Trial v1
[RETRACTED] Green Dolphin CBD Gummies - Reduce anxiety with improved better sleepless - Tincture Trial v1
[RETRACTED]Green Dolphin CBD Gummies Reviews (Price 2022) Shark Tank | Scam or Legit?Overview –Green Dolphin CBD GummiesOrder Now From Officials Website : Click HereProduct Name - ...
Probing switching mechanism of memristor for neuromorphic computing
Probing switching mechanism of memristor for neuromorphic computing
Abstract In recent, neuromorphic computing has been proposed to simulate the human brain system to overcome bottlenecks of the von Neumann architecture. Memristors, ...
Photonic Synapses for Ultrahigh‐Speed Neuromorphic Computing
Photonic Synapses for Ultrahigh‐Speed Neuromorphic Computing
Neuromorphic computing based on a non‐von Neumann architecture is a promising way for the efficient implementation of artificial intelligence. A neuromorphic computing system is ma...
Emerging Optoelectronic Devices for Brain‐Inspired Computing
Emerging Optoelectronic Devices for Brain‐Inspired Computing
AbstractBrain‐inspired neuromorphic computing is recognized as a promising technology for implementing human intelligence in hardware. Neuromorphic devices, including artificial sy...
Solution-Processed Small Molecule Memristors: From Nanowire Arrays to Thin-Films
Solution-Processed Small Molecule Memristors: From Nanowire Arrays to Thin-Films
Conventional computing architectures based on the Von Neumann model are nearing their physical and operational limitations, driven by the breakdown of Moore’s law, memory bottlenec...

Back to Top