Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Osteochondral Regeneration Ability of Uncultured Bone Marrow Mononuclear Cells and Platelet-Rich Fibrin Scaffold

View through CrossRef
Objectives: Platelet-rich fibrin (PRF) and bone marrow mononuclear cells are potential scaffolds and cell sources for osteochondral regeneration. The main aim of this paper is to examine the effects of PRF scaffolds and autologous uncultured bone marrow mononuclear cells on osteochondral regeneration in rabbit knees. Materials and Methods: Three different types of PRF scaffolds were generated from peripheral blood (Ch-PRF and L-PRF) and bone marrow combined with uncultured bone marrow mononuclear cells (BMM-PRF). The histological characteristics of these scaffolds were assessed via hematoxylin–eosin staining, PicroSirius red staining, and immunohistochemical staining. Osteochondral defects with a diameter of 3 mm and depth of 3 mm were created on the trochlear groove of the rabbit’s femur. Different PRF scaffolds were then applied to treat the defects. A group of rabbits with induced osteochondral defects that were not treated with any scaffold was used as a control. Osteochondral tissue regeneration was assessed after 2, 4, and 6 weeks by macroscopy (using the Internal Cartilage Repair Society score, X-ray) and microscopy (hematoxylin—eosin stain, safranin O stain, toluidine stain, and Wakitani histological scale, immunohistochemistry), in addition to gene expression analysis of osteochondral markers. Results: Ch-PRF had a heterogeneous fibrin network structure and cellular population; L-PRF and BMM-PRF had a homogeneous structure with a uniform distribution of the fibrin network. Ch-PRF and L-PRF contained a population of CD45-positive leukocytes embedded in the fibrin network, while mononuclear cells in the BMM-PRF scaffold were positive for the pluripotent stem cell-specific antibody Oct-4. In comparison to the untreated group, the rabbits that were given the autologous graft displayed significantly improved healing of the articular cartilage tissue and of the subchondral bone. Regeneration was gradually observed after 2, 4, and 6 weeks of PRF scaffold treatment, which was particularly evident in the BMM-PRF group. Conclusions: The combination of biomaterials with autologous platelet-rich fibrin and uncultured bone marrow mononuclear cells promoted osteochondral regeneration in a rabbit model more than platelet-rich fibrin material alone. Our results indicate that autologous platelet-rich fibrin scaffolds combined with uncultured bone marrow mononuclear cells applied in healing osteochondral lesions may represent a suitable treatment in addition to stem cell and biomaterial therapy.
Title: Osteochondral Regeneration Ability of Uncultured Bone Marrow Mononuclear Cells and Platelet-Rich Fibrin Scaffold
Description:
Objectives: Platelet-rich fibrin (PRF) and bone marrow mononuclear cells are potential scaffolds and cell sources for osteochondral regeneration.
The main aim of this paper is to examine the effects of PRF scaffolds and autologous uncultured bone marrow mononuclear cells on osteochondral regeneration in rabbit knees.
Materials and Methods: Three different types of PRF scaffolds were generated from peripheral blood (Ch-PRF and L-PRF) and bone marrow combined with uncultured bone marrow mononuclear cells (BMM-PRF).
The histological characteristics of these scaffolds were assessed via hematoxylin–eosin staining, PicroSirius red staining, and immunohistochemical staining.
Osteochondral defects with a diameter of 3 mm and depth of 3 mm were created on the trochlear groove of the rabbit’s femur.
Different PRF scaffolds were then applied to treat the defects.
A group of rabbits with induced osteochondral defects that were not treated with any scaffold was used as a control.
Osteochondral tissue regeneration was assessed after 2, 4, and 6 weeks by macroscopy (using the Internal Cartilage Repair Society score, X-ray) and microscopy (hematoxylin—eosin stain, safranin O stain, toluidine stain, and Wakitani histological scale, immunohistochemistry), in addition to gene expression analysis of osteochondral markers.
Results: Ch-PRF had a heterogeneous fibrin network structure and cellular population; L-PRF and BMM-PRF had a homogeneous structure with a uniform distribution of the fibrin network.
Ch-PRF and L-PRF contained a population of CD45-positive leukocytes embedded in the fibrin network, while mononuclear cells in the BMM-PRF scaffold were positive for the pluripotent stem cell-specific antibody Oct-4.
In comparison to the untreated group, the rabbits that were given the autologous graft displayed significantly improved healing of the articular cartilage tissue and of the subchondral bone.
Regeneration was gradually observed after 2, 4, and 6 weeks of PRF scaffold treatment, which was particularly evident in the BMM-PRF group.
Conclusions: The combination of biomaterials with autologous platelet-rich fibrin and uncultured bone marrow mononuclear cells promoted osteochondral regeneration in a rabbit model more than platelet-rich fibrin material alone.
Our results indicate that autologous platelet-rich fibrin scaffolds combined with uncultured bone marrow mononuclear cells applied in healing osteochondral lesions may represent a suitable treatment in addition to stem cell and biomaterial therapy.

Related Results

Poster 107: The Use of Coacervate Sustained Release System to Identify the Most Potent BMP for Bone Regeneration
Poster 107: The Use of Coacervate Sustained Release System to Identify the Most Potent BMP for Bone Regeneration
Objectives: Bone morphogenetic proteins (BMPs) belong to the transforming growth factor superfamily that were first discovered by Marshall Urist. There are 14 BMPs identified to da...
Uncoupling fibrin from integrin receptors hastens fibrinolysis at the platelet-fibrin interface
Uncoupling fibrin from integrin receptors hastens fibrinolysis at the platelet-fibrin interface
A well-characterized in vitro model system composed of thrombin- stimulated gel-filtered human platelets, fibrin-(ogen), plasminogen, and recombinant tissue plasminogen activator (...
Cytology and histology characteristics of platelet-rich fibrin
Cytology and histology characteristics of platelet-rich fibrin
Background: Platelet-rich fibrin (PRF) is a biomaterial whose frame is a network of fibrin fibers containing cells from peripheral blood and growth factors. PRF biomaterials have g...
Synthesis and Investigation into Apatite-forming Ability of Hydroxyapatite/Chitosan-based Scaffold
Synthesis and Investigation into Apatite-forming Ability of Hydroxyapatite/Chitosan-based Scaffold
In this study, porous scaffolds were fabricated using inorganic material-hydroxyapatite and chitosan for bone-tissue engineering. The combination of hydroxyapatite and chitosan may...
3D-printed nanohydroxyapatite/methylacrylylated silk fibroin scaffold for repairing rat skull defects
3D-printed nanohydroxyapatite/methylacrylylated silk fibroin scaffold for repairing rat skull defects
AbstractThe repair of bone defects remains a major challenge in the clinic, and treatment requires bone grafts or bone replacement materials. Existing biomaterials have many limita...
Could rituximab be a silver lining in refractory bone marrow fibrosis caused by lupus?
Could rituximab be a silver lining in refractory bone marrow fibrosis caused by lupus?
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease that can present with a variety of clinical manifestations, ranging from mild skin involvement to multisystemic ...
p62 Signaling Is Increased in Multiple Myeloma Microenvironment.
p62 Signaling Is Increased in Multiple Myeloma Microenvironment.
Abstract The bone microenvironment plays a critical role in promoting both tumor growth and bone destruction in myeloma (MM). Marrow stromal cells produce factors, w...

Back to Top