Javascript must be enabled to continue!
Yayak Kartika Sari Prediksi Customer Churn Berbasis Adaptive Neuro Fuzzy Inference System
View through CrossRef
Abstrak – Customer Churn adalah pelanggan yang berhenti berlangganan dan pindahpada perusahaan lain, karena berbagai faktor. Customer churn merupakan masalah yang sangatpenting yang harus dihadaapi oleh perusahaan karena berhentinya pelanggan akan berdampakpada retensi perusahaan. Oleh sebab itu, dibuatkan sistem prediksi customer churn untukmengetahui tingkat pelanggan yang churn, apabila customer churn dapat diketahui terlebih dahulu,maka akan menguntungkan bagi pihak CRM untuk mengatur strategi-strategi mencegah pelangganyang melakukan churn. Untuk menentukan prediksi customer churn menggunakan teknik datamining dengan algoritma ANFIS. Algoritma ANFIS merupakan gabungan antara jaringan syaraftiruan dengan fuzzy inference system. Model prediksi yang dibangun dengan metode ANFISmenggunakan pembelajaran alur maju dan pembelajaran alur mundur, sehingga untuk melakukanprediksi dibutuhkan nilai parameter fuzzy baru yang diperoleh dari proses pelatihan. Setelah nilaiparameter fuzzy baru didapatkan, maka akan dilakukan tahap pengujian. Pada tahap pengujiandilakukan dengan proses pembelajaran maju untuk mendapatkan nilai prediksinya, sehingga padaprosesnya nilai prediksi yang berupa angka dan status prediksi. Pelatihan dan pengujian ANFISuntuk semua produk menghasilkan perbandingan nilai error rata-rata pelatihan sebesar 8,316 %
Universitas Nusantara PGRI Kediri
Title: Yayak Kartika Sari Prediksi Customer Churn Berbasis Adaptive Neuro Fuzzy Inference System
Description:
Abstrak – Customer Churn adalah pelanggan yang berhenti berlangganan dan pindahpada perusahaan lain, karena berbagai faktor.
Customer churn merupakan masalah yang sangatpenting yang harus dihadaapi oleh perusahaan karena berhentinya pelanggan akan berdampakpada retensi perusahaan.
Oleh sebab itu, dibuatkan sistem prediksi customer churn untukmengetahui tingkat pelanggan yang churn, apabila customer churn dapat diketahui terlebih dahulu,maka akan menguntungkan bagi pihak CRM untuk mengatur strategi-strategi mencegah pelangganyang melakukan churn.
Untuk menentukan prediksi customer churn menggunakan teknik datamining dengan algoritma ANFIS.
Algoritma ANFIS merupakan gabungan antara jaringan syaraftiruan dengan fuzzy inference system.
Model prediksi yang dibangun dengan metode ANFISmenggunakan pembelajaran alur maju dan pembelajaran alur mundur, sehingga untuk melakukanprediksi dibutuhkan nilai parameter fuzzy baru yang diperoleh dari proses pelatihan.
Setelah nilaiparameter fuzzy baru didapatkan, maka akan dilakukan tahap pengujian.
Pada tahap pengujiandilakukan dengan proses pembelajaran maju untuk mendapatkan nilai prediksinya, sehingga padaprosesnya nilai prediksi yang berupa angka dan status prediksi.
Pelatihan dan pengujian ANFISuntuk semua produk menghasilkan perbandingan nilai error rata-rata pelatihan sebesar 8,316 %.
Related Results
Konstruksi Sistem Inferensi Fuzzy Menggunakan Subtractive Fuzzy C-Means pada Data Parkinson
Konstruksi Sistem Inferensi Fuzzy Menggunakan Subtractive Fuzzy C-Means pada Data Parkinson
Abstract. Fuzzy Inference System requires several stages to get the output, 1) formation of fuzzy sets, 2) formation of rules, 3) application of implication functions, 4) compositi...
Generated Fuzzy Quasi-ideals in Ternary Semigroups
Generated Fuzzy Quasi-ideals in Ternary Semigroups
Here in this paper, we provide characterizations of fuzzy quasi-ideal in terms of level and strong level subsets. Along with it, we provide expression for the generated fuzzy quasi...
Design of an Adaptive Neuro-Fuzzy Inference System (ANFIS) for tractor-implement tillage depth control
Design of an Adaptive Neuro-Fuzzy Inference System (ANFIS) for tractor-implement tillage depth control
During ploughing operations, variations in soil conditions cause ploughing depth errors. This chapter presents the designed of a neuro-fuzzy controller to decrease tractors ploughi...
Churn prediction using machine learning: A coupon optimization technique
Churn prediction using machine learning: A coupon optimization technique
Customer retention has been identified as one of the most crucial difficulties in every Business particularly in the grocery retail industry. In this context, an accurate forecast ...
New Approaches of Generalised Fuzzy Soft sets on fuzzy Codes and Its Properties on Decision-Makings
New Approaches of Generalised Fuzzy Soft sets on fuzzy Codes and Its Properties on Decision-Makings
Background Several scholars defined the concepts of fuzzy soft set theory and their application on decision-making problem. Based on this concept, researchers defined the generalis...
Application of Machine Learning Techniques for Customer Churn Prediction in the Banking Sector
Application of Machine Learning Techniques for Customer Churn Prediction in the Banking Sector
Aim/Purpose: Previous studies have primarily focused on comparing predictive models without considering the impact of data preprocessing on model performance. Therefore, this study...
Identifying customer churn in Telecom sector: A Machine Learning Approach
Identifying customer churn in Telecom sector: A Machine Learning Approach
Nowadays, there is no shortage of options for customers when choosing where to put their money. As a result, customer churn and engagement have become one of the top issues. With t...
The Impact of Customer Service Quality on Customer Satisfaction: A study on Bangladeshi Banks
The Impact of Customer Service Quality on Customer Satisfaction: A study on Bangladeshi Banks
Abstract
This research study examines the impact of customer service quality on customer satisfaction at Bangladeshi Banks. The study aimed to fill existing gaps in underst...

