Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Deformation Analysis of Reinforced Beams Made of Lightweight Aggregate Concrete

View through CrossRef
In the present trend of constructing taller and longer structures, the application of lightweight aggregate concrete is becoming an increasing important advanced solution in the modern construction industry. In engineering practice, the analysis of lightweight concrete elements is performed using the same algorithms used for normal concrete elements. As an alternative to traditional engineering methods, nonlinear numerical algorithms based on constitutive material models may be used. The paper presents a comparative analysis of curvature calculations for flexural lightweight concrete elements, incorporating analytical code methods EN 1992-1 and ACI 318-14, as well as a numerical analysis using the constitutive model of cracked tensile lightweight concrete recently proposed by the authors. To evaluate the adequacy of the theoretical predictions, experimental data of 51 lightweight concrete beams tested during five different programmes were collected. A comparison of theoretical and experimental results showed that the most accurate predictions are obtained using numerical analysis and the constitutive model proposed by the authors. In the future, the latter algorithm can be used as a reliable tool for improving the design standard methods or numerical modelling of lightweight concrete elements subjected to short-term loading.
Title: Deformation Analysis of Reinforced Beams Made of Lightweight Aggregate Concrete
Description:
In the present trend of constructing taller and longer structures, the application of lightweight aggregate concrete is becoming an increasing important advanced solution in the modern construction industry.
In engineering practice, the analysis of lightweight concrete elements is performed using the same algorithms used for normal concrete elements.
As an alternative to traditional engineering methods, nonlinear numerical algorithms based on constitutive material models may be used.
The paper presents a comparative analysis of curvature calculations for flexural lightweight concrete elements, incorporating analytical code methods EN 1992-1 and ACI 318-14, as well as a numerical analysis using the constitutive model of cracked tensile lightweight concrete recently proposed by the authors.
To evaluate the adequacy of the theoretical predictions, experimental data of 51 lightweight concrete beams tested during five different programmes were collected.
A comparison of theoretical and experimental results showed that the most accurate predictions are obtained using numerical analysis and the constitutive model proposed by the authors.
In the future, the latter algorithm can be used as a reliable tool for improving the design standard methods or numerical modelling of lightweight concrete elements subjected to short-term loading.

Related Results

Improvement of Seismic Performance of Ordinary Reinforced Partially Grouted Concrete Masonry Shear Walls
Improvement of Seismic Performance of Ordinary Reinforced Partially Grouted Concrete Masonry Shear Walls
Reinforced masonry constitutes about 10% of all low-rise construction in the US. Most of these structures are commercial and school buildings. It may also be used for multi-story h...
Penetrability of lightweight aggregate concrete
Penetrability of lightweight aggregate concrete
In this paper, a study was conducted on the parameters affecting the sorption of water, chloride ingress and permeability of water into lightweight aggregate concrete. The paramete...
Experimental study and computational analysis of structural performance of reinforced geopolymer concrete beams
Experimental study and computational analysis of structural performance of reinforced geopolymer concrete beams
PurposeIn this study, the aim is to explore the effects of geopolymer concrete (GPC) strength and reinforcement ratio on the flexural performance of reinforced GPC beams. Furthermo...
Dynamic Characteristics Analysis of Three-Layer Steel–Concrete Composite Beams
Dynamic Characteristics Analysis of Three-Layer Steel–Concrete Composite Beams
The dynamic behavior of three-layer composite beams, consisting of concrete slabs and steel beams, is influenced by the structural configuration of each layer as well as the shear ...
Mechanical Properties of Lightweight Alum Sludge Aggregate Concrete
Mechanical Properties of Lightweight Alum Sludge Aggregate Concrete
Disposal of alum sludge (AS) in such an economical and environmental friendly way is a major challenge that water treatment plants around the globe had to deal with. AS cannot be d...
Odd version Mathieu-Gaussian beam based on Green function
Odd version Mathieu-Gaussian beam based on Green function
Like the theoretical pattern of non-diffracting Bessel beams, ideal non-diffracting Mathieu beams also carry infinite energy, but cannot be generated as a physically realizable ent...
Experimental Study of Compressive Properties and Environmental Impact of Recycled Aggregate
Experimental Study of Compressive Properties and Environmental Impact of Recycled Aggregate
As the main component of fiber-reinforced recycled aggregate concrete, the properties of recycled aggregate determine whether recycled aggregate concrete can be used in engineering...
Evaluation of non-destructive testing and long-term durability of geopolymer aggregate concrete
Evaluation of non-destructive testing and long-term durability of geopolymer aggregate concrete
Recent advancements in concrete technology focus more on increasing strength than durability. Concrete with good durability will withstand adverse conditions like frost, chloride p...

Back to Top