Javascript must be enabled to continue!
Optimising the reintroduction of a specialist peatland butterfly Coenonympha tullia onto peatland restoration sites
View through CrossRef
Abstract
The two main goals of peatland restoration are habitat improvement and climate change mitigation by reducing greenhouse gas emissions from damaged peatlands and providing a net carbon sink. The biodiversity of specialist peatland species is threatened because of habitat destruction and the large heath butterfly Coenonympha tullia has become a flagship species for peatland ecosystem restoration, with a species reintroduction programme currently underway on a peatland restoration site within Chat Moss, Greater Manchester, UK. The aim of this study was to improve our quantitative understanding of C. tullia habitat resource requirements to optimise habitat restoration for further reintroduction attempts. We monitored butterfly micro-distribution and dispersal during the first three flight seasons (2020, 2021 and 2022) of the reintroduction using high-accuracy GPS, combined with a distance-bearing protocol. Analysis of butterfly flight points and rest points in relation to plant species distribution and abundance, identified the most important habitat resources. Using logistic regression, treatment-response curves were constructed, enabling us to identify critical thresholds for the abundance of these important habitat resources. The break of slope near the top of the logistic curve was identified using segmented regression, giving an estimate of the near-optimal abundance; fourteen Eriophorum vaginatum tussocks per 2 m quadrat and 13.4% Erica tetralix cover.
Implications for insect conservation
During ecosystem restorations, prior to the reintroduction of species with specialist habitat requirements, it is necessary to have a clear understanding of the abundance of the important habitat resources that need to be provided. The quantitative approach we describe defines the most significant environmental factors and habitat resources, then uses segmented regression to estimate the near-optimal habitat resource requirements; increasing the likelihood of reintroduced populations thriving and reintroduction programmes achieving long-term success.
Springer Science and Business Media LLC
Title: Optimising the reintroduction of a specialist peatland butterfly Coenonympha tullia onto peatland restoration sites
Description:
Abstract
The two main goals of peatland restoration are habitat improvement and climate change mitigation by reducing greenhouse gas emissions from damaged peatlands and providing a net carbon sink.
The biodiversity of specialist peatland species is threatened because of habitat destruction and the large heath butterfly Coenonympha tullia has become a flagship species for peatland ecosystem restoration, with a species reintroduction programme currently underway on a peatland restoration site within Chat Moss, Greater Manchester, UK.
The aim of this study was to improve our quantitative understanding of C.
tullia habitat resource requirements to optimise habitat restoration for further reintroduction attempts.
We monitored butterfly micro-distribution and dispersal during the first three flight seasons (2020, 2021 and 2022) of the reintroduction using high-accuracy GPS, combined with a distance-bearing protocol.
Analysis of butterfly flight points and rest points in relation to plant species distribution and abundance, identified the most important habitat resources.
Using logistic regression, treatment-response curves were constructed, enabling us to identify critical thresholds for the abundance of these important habitat resources.
The break of slope near the top of the logistic curve was identified using segmented regression, giving an estimate of the near-optimal abundance; fourteen Eriophorum vaginatum tussocks per 2 m quadrat and 13.
4% Erica tetralix cover.
Implications for insect conservation
During ecosystem restorations, prior to the reintroduction of species with specialist habitat requirements, it is necessary to have a clear understanding of the abundance of the important habitat resources that need to be provided.
The quantitative approach we describe defines the most significant environmental factors and habitat resources, then uses segmented regression to estimate the near-optimal habitat resource requirements; increasing the likelihood of reintroduced populations thriving and reintroduction programmes achieving long-term success.
Related Results
Peatland fire regime across Riau peat hydrological unit, Indonesia
Peatland fire regime across Riau peat hydrological unit, Indonesia
Peatland stretches across approximately 8% of Indonesia’s land area. Peat fire disturbance, which affects the carbon dynamics of the ecosystem, will determine the country's vision ...
Peatland restoration can provide climate change mitigation over all time-scales: A UK case-study
Peatland restoration can provide climate change mitigation over all time-scales: A UK case-study
AbstractPeatlands provide one of the largest terrestrial carbon stocks in the UK. However, a large proportion of peatlands are drained for peat extraction, agriculture and other us...
Comparison of the planting success and risks of pine weevil damage on mineral soil and drained peatland sites three years after planting
Comparison of the planting success and risks of pine weevil damage on mineral soil and drained peatland sites three years after planting
Over 20% of regeneration operations will be on drained peatland in the next decade in Finland. There are only a few studies comparing the planting success and the risk of pine weev...
THE INTEGRATED PEATLAND MANAGEMENT SYSTEM (IPMS)
THE INTEGRATED PEATLAND MANAGEMENT SYSTEM (IPMS)
Peatland is a rich ecosystem containing many organic components. This ecosystem is composed of plant residue materials that have not undergone a complete decomposition process due ...
STATUS OF PEATLAND FIRE RESEARCH IN INDONESIA
STATUS OF PEATLAND FIRE RESEARCH IN INDONESIA
Peatland fire research has been on the increasing trend since 1997/1998 when fire episode experienced by Indonesia and ASEAN region. Its impact on transboundary haze pollution has ...
Improving peat decomposition in a peatland greenhouse gas emissions model: Peatland-VU v3.
Improving peat decomposition in a peatland greenhouse gas emissions model: Peatland-VU v3.
Accurate modelling of peatland carbon dynamics is critical for understanding their role in the global carbon cycle and predicting future greenhouse gas (GHG) fluxes. In this study,...
Modelling peatland development in temperate alluvial environments
Modelling peatland development in temperate alluvial environments
<p>It is well known that C accumulation rates are much higher when focusing on short-term measurement periods in areas with active peat growth when compared to the ne...
Konsep Butterfly Effect dalam Psikologi Positif
Konsep Butterfly Effect dalam Psikologi Positif
The butterfly effect is a term used in various studies, including psychology. Not too down to earth; however, some figures use this term. In this case, the writing of this article ...

