Javascript must be enabled to continue!
TGAN-AD: Transformer-Based GAN for Anomaly Detection of Time Series Data
View through CrossRef
Anomaly detection on time series data has been successfully used in power grid operation and maintenance, flow detection, fault diagnosis, and other applications. However, anomalies in time series often lack strict definitions and labels, and existing methods often suffer from the need for rigid hypotheses, the inability to handle high-dimensional data, and highly time-consuming calculation costs. Generative Adversarial Networks (GANs) can learn the distribution pattern of normal data, detecting anomalies by comparing the reconstructed normal data with the original data. However, it is difficult for GANs to extract contextual information from time series data. In this paper, we propose a new method, Transformer-based GAN for Anomaly Detection of Time Series Data (TGAN-AD), The transformer-based generators of TGAN-AD can extract contextual features of time series data to prompt the performance. TGAN-AD’s discriminator can also assist in determining abnormal data. Anomaly scores are calculated through both the generator and the discriminator. We have conducted comprehensive experiments on three public datasets. Experimental results show that our TGAN-AD has better performance in anomaly detection than the state-of-the-art anomaly detection techniques, with the highest Recall and F1 values on all datasets. Our experiments also demonstrate the high efficiency of the model and the optimal choice of hyperparameters.
Title: TGAN-AD: Transformer-Based GAN for Anomaly Detection of Time Series Data
Description:
Anomaly detection on time series data has been successfully used in power grid operation and maintenance, flow detection, fault diagnosis, and other applications.
However, anomalies in time series often lack strict definitions and labels, and existing methods often suffer from the need for rigid hypotheses, the inability to handle high-dimensional data, and highly time-consuming calculation costs.
Generative Adversarial Networks (GANs) can learn the distribution pattern of normal data, detecting anomalies by comparing the reconstructed normal data with the original data.
However, it is difficult for GANs to extract contextual information from time series data.
In this paper, we propose a new method, Transformer-based GAN for Anomaly Detection of Time Series Data (TGAN-AD), The transformer-based generators of TGAN-AD can extract contextual features of time series data to prompt the performance.
TGAN-AD’s discriminator can also assist in determining abnormal data.
Anomaly scores are calculated through both the generator and the discriminator.
We have conducted comprehensive experiments on three public datasets.
Experimental results show that our TGAN-AD has better performance in anomaly detection than the state-of-the-art anomaly detection techniques, with the highest Recall and F1 values on all datasets.
Our experiments also demonstrate the high efficiency of the model and the optimal choice of hyperparameters.
Related Results
Highmobility AlGaN/GaN high electronic mobility transistors on GaN homo-substrates
Highmobility AlGaN/GaN high electronic mobility transistors on GaN homo-substrates
Gallium nitride (GaN) has great potential applications in high-power and high-frequency electrical devices due to its superior physical properties.High dislocation density of GaN g...
Automatic Load Sharing of Transformer
Automatic Load Sharing of Transformer
Transformer plays a major role in the power system. It works 24 hours a day and provides power to the load. The transformer is excessive full, its windings are overheated which lea...
Studies on the Influences of i-GaN, n-GaN, p-GaN and InGaN Cap Layers in AlGaN/GaN High-Electron-Mobility Transistors
Studies on the Influences of i-GaN, n-GaN, p-GaN and InGaN Cap Layers in AlGaN/GaN High-Electron-Mobility Transistors
Systematic studies were performed on the influence of different cap layers of i-GaN, n-GaN, p-GaN and InGaN on AlGaN/GaN high-electron-mobility transistors (HEMTs) grown on sapphi...
CG-TGAN: Conditional Generative Adversarial Networks with Graph Neural Networks for Tabular Data Synthesizing
CG-TGAN: Conditional Generative Adversarial Networks with Graph Neural Networks for Tabular Data Synthesizing
Data sharing is necessary for AI to be widely used, but sharing sensitive data with others with privacy is risky.
To solve these problems, it is necessary to synthesize realistic t...
SID-TGAN: A Transformer-Based Generative Adversarial Network for Sonar Image Despeckling
SID-TGAN: A Transformer-Based Generative Adversarial Network for Sonar Image Despeckling
Sonar images are inherently affected by speckle noise, which degrades image quality and hinders image exploitation. Despeckling is an important pre-processing task that aims to rem...
ANALISIS PENGARUH MASA OPERASIONAL TERHADAP PENURUNAN KAPASITAS TRANSFORMATOR DISTRIBUSI DI PT PLN (PERSERO)
ANALISIS PENGARUH MASA OPERASIONAL TERHADAP PENURUNAN KAPASITAS TRANSFORMATOR DISTRIBUSI DI PT PLN (PERSERO)
One cause the interruption of transformer is loading that exceeds the capabilities of the transformer. The state of continuous overload will affect the age of the transformer and r...
LIFE CYCLE OF TRANSFORMER 110/X KV AND ITS VALUE
LIFE CYCLE OF TRANSFORMER 110/X KV AND ITS VALUE
In a deregulated environment, power companies are in the constant process of reducing the costs of operating power facilities, with the aim of optimally improving the quality of de...
A systematic survey: role of deep learning-based image anomaly detection in industrial inspection contexts
A systematic survey: role of deep learning-based image anomaly detection in industrial inspection contexts
Industrial automation is rapidly evolving, encompassing tasks from initial assembly to final product quality inspection. Accurate anomaly detection is crucial for ensuring the reli...


