Javascript must be enabled to continue!
Super‐Linear‐Threshold‐Switching Selector with Multiple Jar‐Shaped Cu‐Filaments in the Amorphous Ge3Se7 Resistive Switching Layer in a Cross‐Point Synaptic Memristor Array
View through CrossRef
AbstractThe learning and inference efficiencies of an artificial neural network represented by a cross‐point synaptic memristor array can be achieved using a selector, with high selectivity (Ion/Ioff) and sufficient death region, stacked vertically on a synaptic memristor. This can prevent a sneak current in the memristor array. A selector with multiple jar‐shaped conductive Cu filaments in the resistive switching layer is precisely fabricated by designing the Cu ion concentration depth profile of the CuGeSe layer as a filament source, TiN diffusion barrier layer, and Ge3Se7 switching layer. The selector performs super‐linear‐threshold‐switching with a selectivity of > 107, death region of −0.70–0.65 V, holding time of 300 ns, switching speed of 25 ns, and endurance cycle of > 106. In addition, the mechanism of switching is proven by the formation of conductive Cu filaments between the CuGeSe and Ge3Se7 layers under a positive bias on the top Pt electrode and an automatic rupture of the filaments after the holding time. Particularly, a spiking deep neural network using the designed one‐selector‐one‐memory cross‐point array improves the Modified National Institute of Standards and Technology classification accuracy by ≈3.8% by eliminating the sneak current in the cross‐point array during the inference process.
Title: Super‐Linear‐Threshold‐Switching Selector with Multiple Jar‐Shaped Cu‐Filaments in the Amorphous Ge3Se7 Resistive Switching Layer in a Cross‐Point Synaptic Memristor Array
Description:
AbstractThe learning and inference efficiencies of an artificial neural network represented by a cross‐point synaptic memristor array can be achieved using a selector, with high selectivity (Ion/Ioff) and sufficient death region, stacked vertically on a synaptic memristor.
This can prevent a sneak current in the memristor array.
A selector with multiple jar‐shaped conductive Cu filaments in the resistive switching layer is precisely fabricated by designing the Cu ion concentration depth profile of the CuGeSe layer as a filament source, TiN diffusion barrier layer, and Ge3Se7 switching layer.
The selector performs super‐linear‐threshold‐switching with a selectivity of > 107, death region of −0.
70–0.
65 V, holding time of 300 ns, switching speed of 25 ns, and endurance cycle of > 106.
In addition, the mechanism of switching is proven by the formation of conductive Cu filaments between the CuGeSe and Ge3Se7 layers under a positive bias on the top Pt electrode and an automatic rupture of the filaments after the holding time.
Particularly, a spiking deep neural network using the designed one‐selector‐one‐memory cross‐point array improves the Modified National Institute of Standards and Technology classification accuracy by ≈3.
8% by eliminating the sneak current in the cross‐point array during the inference process.
Related Results
Circuit modeling of memristors
Circuit modeling of memristors
Problem setting. Over the past few decades, the growth of electronic and computing power has fundamentally changed our work and life, and it is expected that significant new change...
Quantitative nanoscale imaging of synaptic protein organization
Quantitative nanoscale imaging of synaptic protein organization
The arrival of super-resolution techniques has driven researchers to explore biological areas that were unreachable before. Such techniques not only allowed the improvement of spat...
Synaptic Integration
Synaptic Integration
Abstract
Neurons in the brain receive thousands of synaptic inputs from other neurons. Synaptic integration is the term used to describe how neu...
[RETRACTED] ACV Super Slim Gummies Reviews Scam Or Legit Updated 2022 – Must-See Worth Buying? v1
[RETRACTED] ACV Super Slim Gummies Reviews Scam Or Legit Updated 2022 – Must-See Worth Buying? v1
[RETRACTED]➪ACV Super Slim Gummies - Official Website Link - Click Here To Buy❤️ ✪Product Name ➯ ACV Super Slim Gummies UK✪Main Benefits ➯ Can help you with all your overweight i...
[RETRACTED] ACV Super Slim Gummies Reviews Scam Or Legit Updated 2022 – Must-See Worth Buying? v1
[RETRACTED] ACV Super Slim Gummies Reviews Scam Or Legit Updated 2022 – Must-See Worth Buying? v1
[RETRACTED]➪ACV Super Slim Gummies - Official Website Link - Click Here To Buy❤️ ✪Product Name ➯ ACV Super Slim Gummies UK✪Main Benefits ➯ Can help you with all your overweight i...
A screen for genes that regulate synaptic growth reveals mechanisms that stabilize synaptic strength
A screen for genes that regulate synaptic growth reveals mechanisms that stabilize synaptic strength
ABSTRACTSynapses grow, prune, and remodel throughout development, experience, and disease. This structural plasticity can destabilize information transfer in the nervous system. Ho...
Modelling Simulation of Resistive RAM devices for Analog and Digital Paradigms: An Experimental Review
Modelling Simulation of Resistive RAM devices for Analog and Digital Paradigms: An Experimental Review
Over the years, with the introduction of non-volatile memory devices such as memristors and other CMOS relevant devices, the ability to manufacture hardware which can emulate the p...
Harnessing nonlinear conductive characteristic of TiO2/HfO2 memristor crossbar for implementing parallel vector–matrix multiplication
Harnessing nonlinear conductive characteristic of TiO2/HfO2 memristor crossbar for implementing parallel vector–matrix multiplication
Memristor crossbar arrays are expected to achieve highly energy-efficient neuromorphic computing via implementing parallel vector–matrix multiplication (VMM) in situ. The similarit...

