Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

MiR-200a inhibits epithelial-mesenchymal transition of pancreatic cancer stem cell

View through CrossRef
Abstract Background Pancreatic cancer is one of the most aggressive cancers, and the aggressiveness of pancreatic cancer is in part due to its intrinsic and extrinsic drug resistance characteristics, which are also associated with the acquisition of epithelial-to-mesenchymal transition (EMT). Increasing evidence suggests that EMT-type cells share many biological characteristics with cancer stem-like cells. And miR-200 has been identified as a powerful regulator of EMT. Methods Cancer Stem Cells (CSCs) of human pancreatic cancer cell line PANC-1 were processed for CD24, CD44 and ESA multi-colorstaining, and sorted out on a BD FACS Aria II machine. RT-qPCR was performed using the miScript PCR Kit to assay the expression of miR-200 family. In order to find the role of miR-200a in the process of EMT, miR-200a mimic was transfected to CSCs. Results Pancreatic cancer cells with EMT phenotype displayed stem-like cell features characterized by the expression of cell surface markers CD24, CD44 and epithelial-specific antigen (ESA), which was associated with decreased expression of miR-200a. Moreover, overexpression of miR-200a was resulted in down-regulation of N-cadherin, ZEB1 and vimentin, but up-regulation of E-cadherin. In addition, miR-200a overexpression inhibited cell migration and invasion in CSCs. Conclusion In our study, we found that miR-200a played an important role in linking the characteristics of cancer stem-like cells with EMT-like cell signatures in pancreatic cancer. Selective elimination of cancer stem-like cells by reversing the EMT phenotype to mesenchymal-to-epithelial transition (MET) phenotype using novel agents would be useful for prevention and/or treatment of pancreatic cancer.
Title: MiR-200a inhibits epithelial-mesenchymal transition of pancreatic cancer stem cell
Description:
Abstract Background Pancreatic cancer is one of the most aggressive cancers, and the aggressiveness of pancreatic cancer is in part due to its intrinsic and extrinsic drug resistance characteristics, which are also associated with the acquisition of epithelial-to-mesenchymal transition (EMT).
Increasing evidence suggests that EMT-type cells share many biological characteristics with cancer stem-like cells.
And miR-200 has been identified as a powerful regulator of EMT.
Methods Cancer Stem Cells (CSCs) of human pancreatic cancer cell line PANC-1 were processed for CD24, CD44 and ESA multi-colorstaining, and sorted out on a BD FACS Aria II machine.
RT-qPCR was performed using the miScript PCR Kit to assay the expression of miR-200 family.
In order to find the role of miR-200a in the process of EMT, miR-200a mimic was transfected to CSCs.
Results Pancreatic cancer cells with EMT phenotype displayed stem-like cell features characterized by the expression of cell surface markers CD24, CD44 and epithelial-specific antigen (ESA), which was associated with decreased expression of miR-200a.
Moreover, overexpression of miR-200a was resulted in down-regulation of N-cadherin, ZEB1 and vimentin, but up-regulation of E-cadherin.
In addition, miR-200a overexpression inhibited cell migration and invasion in CSCs.
Conclusion In our study, we found that miR-200a played an important role in linking the characteristics of cancer stem-like cells with EMT-like cell signatures in pancreatic cancer.
Selective elimination of cancer stem-like cells by reversing the EMT phenotype to mesenchymal-to-epithelial transition (MET) phenotype using novel agents would be useful for prevention and/or treatment of pancreatic cancer.

Related Results

Stem cells
Stem cells
What is a stem cell? The term is a combination of ‘cell’ and ‘stem’. A cell is a major category of living thing, while a stem is a site of growth and support for something else. In...
Abstract 2084: Tumor suppressor microRNA miR-34 inhibits human pancreatic cancer stem cells
Abstract 2084: Tumor suppressor microRNA miR-34 inhibits human pancreatic cancer stem cells
Abstract MicroRNAs (miRNAs) have been implicated in cancer initiation and progression via their ability to affect expression of genes and proteins that regulate cell...
Differential marker expression by cultures rich in mesenchymal stem cells
Differential marker expression by cultures rich in mesenchymal stem cells
AbstractBackgroundMesenchymal stem cells have properties that make them amenable to therapeutic use. However, the acceptance of mesenchymal stem cells in clinical practice requires...
The effect of miR-138 on the proliferation and apoptosis of breast cancer cells through the NF-κB/VEGF signaling pathway
The effect of miR-138 on the proliferation and apoptosis of breast cancer cells through the NF-κB/VEGF signaling pathway
The analyze the effect of miR-138 on the proliferation and apoptosis of breast cancer cells through the NF-κB/VEGF signaling pathway is the Objective of this experiment. For this a...
Oncomirnas and Tumor Suppressors In Microvesicles From Four Types Of Cancer
Oncomirnas and Tumor Suppressors In Microvesicles From Four Types Of Cancer
Abstract Objectives Microvesicles (MVs) are small vesicles that are shed from almost all cell types including cancer cells into ...
Abstract 1794: A comparative microRNA expression analysis in breast cancer and melanoma tissues
Abstract 1794: A comparative microRNA expression analysis in breast cancer and melanoma tissues
Abstract Recently studies have revealed that a subset of microRNAs (miRNAs) is aberrantly expressed in the development and progression of a variety of cancers includ...
Abstract 1845: Cooperative function between miR-142-3p and miR-142-5p in hepatocellular carcinoma.
Abstract 1845: Cooperative function between miR-142-3p and miR-142-5p in hepatocellular carcinoma.
Abstract MicroRNAs (miRNAs) are small non-coding RNAs regulate gene expression at post-transcriptional level and involved in a wide range of biological processes. Ab...

Back to Top