Javascript must be enabled to continue!
Shape Memory Alloys
View through CrossRef
Numerous metallic alloys are now known to exhibit a shape memory effect through which an article deformed at a lower temperature will regain its original undeformed shape when heated to a higher temperature. This behavior is basically a consequence of a martensitic phase transformation. When compared, the various shape memory materials are found to have common characteristics such as atomic ordering, a thermoelastic martensitic transformation that is crystallographically reversible, and a martensite phase that forms in a self-accommodating manner. The explanation of the shape memory phenomenon is now universal and well in hand. In addition to the familiar “one-way” memory, shape memory alloys also exhibit a “two-way” memory as well and a “mechanical” shape memory resulting from the formation and reversal of stressinduced martensite.Fundamental to the shape memory effect (SME) is the occurrence of a martensitic phase transformation and its subsequent reversal Basically, a shape memory alloy (SMA) is deformed in the martensitic condition (martensite), and the shape recovery occurs during heating when the specimen undergoes a reverse transformation of the martensite to its parent phase. This is the essence of the shape memory effect. Materials that exhibit shape memory behavior also show a two-way shape memory, as well as a phenomenon called superelasticity. These are also discussed.The shape memory response after deformation and thermal stimulation constitutes “smart” behavior, i.e., Stimulated Martensite-Austenite Reverse Transformation.
Title: Shape Memory Alloys
Description:
Numerous metallic alloys are now known to exhibit a shape memory effect through which an article deformed at a lower temperature will regain its original undeformed shape when heated to a higher temperature.
This behavior is basically a consequence of a martensitic phase transformation.
When compared, the various shape memory materials are found to have common characteristics such as atomic ordering, a thermoelastic martensitic transformation that is crystallographically reversible, and a martensite phase that forms in a self-accommodating manner.
The explanation of the shape memory phenomenon is now universal and well in hand.
In addition to the familiar “one-way” memory, shape memory alloys also exhibit a “two-way” memory as well and a “mechanical” shape memory resulting from the formation and reversal of stressinduced martensite.
Fundamental to the shape memory effect (SME) is the occurrence of a martensitic phase transformation and its subsequent reversal Basically, a shape memory alloy (SMA) is deformed in the martensitic condition (martensite), and the shape recovery occurs during heating when the specimen undergoes a reverse transformation of the martensite to its parent phase.
This is the essence of the shape memory effect.
Materials that exhibit shape memory behavior also show a two-way shape memory, as well as a phenomenon called superelasticity.
These are also discussed.
The shape memory response after deformation and thermal stimulation constitutes “smart” behavior, i.
e.
, Stimulated Martensite-Austenite Reverse Transformation.
Related Results
Tin and Tin Alloys
Tin and Tin Alloys
Abstract
Tin is a soft, brilliant white, low-melting metal that is most widely known and characterized in the form of coating. This article discusses the primary and...
Microstructure and Phase Transition Characteristics of NiTi Shape Memory Alloy
Microstructure and Phase Transition Characteristics of NiTi Shape Memory Alloy
Abstract
Shape memory alloy (SMA) with shape memory effect and superelasticity has had an increasing interest for researchers of mechanics of materials in recent dec...
Shape‐Memory Polymers
Shape‐Memory Polymers
Abstract
Shape‐memory polymers
are stimuli‐responsive materials. Upon exposure to an external stimulus, they have the capability of changing thei...
Shape‐Memory Polymers
Shape‐Memory Polymers
Abstract
Shape‐memory polymers are stimuli‐responsive materials. Upon exposure to an external stimulus, they have the capability of changing their shape. A change in shap...
Effects of additional element on the glass forming ability and corrosion resistance of bulk Zr-based amorphous alloys
Effects of additional element on the glass forming ability and corrosion resistance of bulk Zr-based amorphous alloys
By using the real-place recursion method, bulk Zr-based amorphous alloys with effects of additional element Nb,Ta,Y,La on the glass forming ability and corrosion resistance were st...
Corrosion Protection Application of Liquid-Infused Surface with Regional Growth of LDH Films on Al Alloys
Corrosion Protection Application of Liquid-Infused Surface with Regional Growth of LDH Films on Al Alloys
Al alloys with their easy accessibility and good workability have been extensively used in oceanic engineering area [1]. However, corrosion failure of Al alloys is a major challeng...
Beryllium and Beryllium Alloys
Beryllium and Beryllium Alloys
AbstractBeryllium, Be, is the only light metal having a high melting point. The majority of the beryllium commercially produced is used in alloys, principally copper–beryllium allo...
Orthogonal Curve Analysis of Human Scalp Shape
Orthogonal Curve Analysis of Human Scalp Shape
This paper presents a shape analysis on orthogonal feature curves of 3D bald head scans with the intention of predicting scalp shape under the hair. While there are currently a num...


