Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

The Horizontal Kinematics of the North Island of New Zealand

View through CrossRef
<p>The advantages and disadvantages of the 'displacement' approach and the 'strain' approach to the analysis of repeated geodetic surveys for crustal deformation are discussed and two methods of geodetic strain analysis are described in detail. Repeated geodetic surveys in the central North Island show i) secular widening of the Taupo Volcanic Zone (TVZ) at 7 mm y-1 without significant transcurrent motion ii) north-south dextral motion at 14 mm y-1 and east-west narrowing at 4 mm y-1 across the northern end of the North Island Shear Belt iii) 3.1 m extension at 135' across a 15 km-wide region north of Lake Taupo, and adjacent zones of compressive rebound all associated with the 1922 Taupo Earthquakes. From the epicentral distribution and horizontal strain pattern a 15 km-square fault dipping 40' and striking parallel to the TVZ is inferred for the 1922 earthquakes. The seismic moment, 1.3 x 10 26 dyne cm, and the stress drop, 134 bars, are abnormally high for the TVZ. Widening of the TVZ is considered to be back-arc spreading. The spreading axis is postulated to extend northeast into the Havre Trough via a north-south dextral transform; and southwest into the Waverley Fault Zone and Waimea Depression via the sinistral reverse Raetihi Transform. Deformation of the North Island is not homogeneous. Fault zones are idealized as line plate boundaries and four plates -Indian, Central, Kermadec and Pacific - are postulated to account for the deformation. The Indian-Pacific macroplate pole is adopted and non-unique positions and rotation rates for the remaining poles are determined from geodetic strain data and the geometry of plate interactions. The Central Plate is moving away from the Indian Plate at the back-arc spreading axis; the Kermadec Plate is moving dextrally with respect to the Central Plate at the North Island Shear Belt which accommodates most of the transcurrent component of motion between the Indian and Pacific plates in the North Island and gives almost pure subduction of the Pacific Plate under the Kermadec Plate at the Hikurangi Margin.</p>
Victoria University of Wellington Library
Title: The Horizontal Kinematics of the North Island of New Zealand
Description:
<p>The advantages and disadvantages of the 'displacement' approach and the 'strain' approach to the analysis of repeated geodetic surveys for crustal deformation are discussed and two methods of geodetic strain analysis are described in detail.
Repeated geodetic surveys in the central North Island show i) secular widening of the Taupo Volcanic Zone (TVZ) at 7 mm y-1 without significant transcurrent motion ii) north-south dextral motion at 14 mm y-1 and east-west narrowing at 4 mm y-1 across the northern end of the North Island Shear Belt iii) 3.
1 m extension at 135' across a 15 km-wide region north of Lake Taupo, and adjacent zones of compressive rebound all associated with the 1922 Taupo Earthquakes.
From the epicentral distribution and horizontal strain pattern a 15 km-square fault dipping 40' and striking parallel to the TVZ is inferred for the 1922 earthquakes.
The seismic moment, 1.
3 x 10 26 dyne cm, and the stress drop, 134 bars, are abnormally high for the TVZ.
Widening of the TVZ is considered to be back-arc spreading.
The spreading axis is postulated to extend northeast into the Havre Trough via a north-south dextral transform; and southwest into the Waverley Fault Zone and Waimea Depression via the sinistral reverse Raetihi Transform.
Deformation of the North Island is not homogeneous.
Fault zones are idealized as line plate boundaries and four plates -Indian, Central, Kermadec and Pacific - are postulated to account for the deformation.
The Indian-Pacific macroplate pole is adopted and non-unique positions and rotation rates for the remaining poles are determined from geodetic strain data and the geometry of plate interactions.
The Central Plate is moving away from the Indian Plate at the back-arc spreading axis; the Kermadec Plate is moving dextrally with respect to the Central Plate at the North Island Shear Belt which accommodates most of the transcurrent component of motion between the Indian and Pacific plates in the North Island and gives almost pure subduction of the Pacific Plate under the Kermadec Plate at the Hikurangi Margin.
</p>.

Related Results

On Flores Island, do "ape-men" still exist? https://www.sapiens.org/biology/flores-island-ape-men/
On Flores Island, do "ape-men" still exist? https://www.sapiens.org/biology/flores-island-ape-men/
<span style="font-size:11pt"><span style="background:#f9f9f4"><span style="line-height:normal"><span style="font-family:Calibri,sans-serif"><b><spa...
A New Completion Technology to Improve Horizontal Well Performances
A New Completion Technology to Improve Horizontal Well Performances
Abstract Some recent research results have shown that especially for long horizontal wells with relatively high rate, when the friction loss plays a significant r...
Survey Of Horizontal Gas Well Activity
Survey Of Horizontal Gas Well Activity
Abstract This paper presents the results of a survey on horizontal gas well activity throughout the world. The survey was conducted for the Gas Research Institute...
Pressure Transient Analysis for Horizontal Well and Multi-Branched Horizontal Wells
Pressure Transient Analysis for Horizontal Well and Multi-Branched Horizontal Wells
Abstract Transient pressure for cases of a horizontal wellbore axis with any angle inclined to a fault or a constant pressure supply boundary in anisotropic forma...
Physical Modelling of Recovery Processes Utilizing Horizontal Wells-Impact of Scaling Well Size
Physical Modelling of Recovery Processes Utilizing Horizontal Wells-Impact of Scaling Well Size
Abstract One of the main characteristics of horizontal wells is their extended contact with the reservoir. This extended contact provides many benefits for horizo...
Anisotropic Permeability Estimation by Horizontal Well Tests
Anisotropic Permeability Estimation by Horizontal Well Tests
Abstract A horizontal well drilled along the principal permeability kx direction is often assumed in horizontal well test interpretation. However, the orientation...

Back to Top