Javascript must be enabled to continue!
Data-Driven Nonlinear Iterative Inversion Suspension Control
View through CrossRef
The commercial operation of the maglev train has strict requirements for the reliability and safety of the suspension control system. However, due to a large number of unmodeled dynamics of the suspension system, it is difficult to obtain the precise mathematical model of the suspension system. After the suspension system has been operated for a long time with high load, the system model will change due to the wear, aging and failure of components, as well as the settlement of the line and track. The control performance is degraded. Therefore, this paper proposes a data-driven nonlinear iterative inversion suspension control algorithm, which can achieve high-precision tracking performance recovery control after control performance degradation without depending on the suspension system model. The control performance of the suspension system is improved by learning the measured data of the historical suspension system, and the fast convergence of the tracking error and high-precision stable suspension control are realized in the presence of unmodeled dynamics and external noise interference. Based on the historical suspension data of the maglev train suspension control system, the inverse dynamics model of the suspension system is identified by iterative inversion learning based on data drive, and the suspension control framework based on iterative inversion is designed. Then, the nonlinear input update strategy is used to realize the rapid convergence of the learning process. Finally, the simulation experiment of the maglev train suspension system and the physical experiment of the maglev system experimental platform are combined. It is verified that the proposed levitation control algorithm can achieve high-precision fast tracking performance recovery control after the system control performance degrades under noise environment.
Title: Data-Driven Nonlinear Iterative Inversion Suspension Control
Description:
The commercial operation of the maglev train has strict requirements for the reliability and safety of the suspension control system.
However, due to a large number of unmodeled dynamics of the suspension system, it is difficult to obtain the precise mathematical model of the suspension system.
After the suspension system has been operated for a long time with high load, the system model will change due to the wear, aging and failure of components, as well as the settlement of the line and track.
The control performance is degraded.
Therefore, this paper proposes a data-driven nonlinear iterative inversion suspension control algorithm, which can achieve high-precision tracking performance recovery control after control performance degradation without depending on the suspension system model.
The control performance of the suspension system is improved by learning the measured data of the historical suspension system, and the fast convergence of the tracking error and high-precision stable suspension control are realized in the presence of unmodeled dynamics and external noise interference.
Based on the historical suspension data of the maglev train suspension control system, the inverse dynamics model of the suspension system is identified by iterative inversion learning based on data drive, and the suspension control framework based on iterative inversion is designed.
Then, the nonlinear input update strategy is used to realize the rapid convergence of the learning process.
Finally, the simulation experiment of the maglev train suspension system and the physical experiment of the maglev system experimental platform are combined.
It is verified that the proposed levitation control algorithm can achieve high-precision fast tracking performance recovery control after the system control performance degrades under noise environment.
Related Results
Application of actuator dynamics inversion techniques to active vibration control systems and shake table testing
Application of actuator dynamics inversion techniques to active vibration control systems and shake table testing
Excessive vibrations problems usually arise in lightweight structures subjected to human actions. The active vibration absorber constitutes an effective solution to mitigate these ...
Inversion Using Adaptive Physics-Based Neural Network: Application to Magnetotelluric Inversion
Inversion Using Adaptive Physics-Based Neural Network: Application to Magnetotelluric Inversion
Abstract
In order to develop a geophysical earth model that is consistent with the measured geophysical data, two types of inversions are commonly used: a physics-ba...
On iterative methods to solve nonlinear equations
On iterative methods to solve nonlinear equations
Many of the problems in experimental sciences and other disciplines can be expressed in the form of nonlinear equations. The solution of these equations is rarely obtained in close...
Integrated Hydrocarbon Detection Based on Full Frequency Pre-Stack Seismic Inversion
Integrated Hydrocarbon Detection Based on Full Frequency Pre-Stack Seismic Inversion
Abstract
To improve the accuracy of hydrocarbon detection, seismic amplitude variation with offset (AVO), seismic amplitude variation with frequency (AVF), and direc...
Variable Depth Streamer: Benefits for Rock Property Inversion
Variable Depth Streamer: Benefits for Rock Property Inversion
Abstract
The lack of low frequencies in conventional seismic data means that a low frequency model must be incorporated in seismic inversion process in order to r...
The Role of Gravity Waves in the Mesosphere Inversion Layers (MILs) over low-latitude (3–15° N) Using SABER Satellite Observations
The Role of Gravity Waves in the Mesosphere Inversion Layers (MILs) over low-latitude (3–15° N) Using SABER Satellite Observations
Abstract. The Mesosphere transitional region over low latitude is a distinct and highly turbulent zone of the atmosphere. A transition MLT region is connected with dynamic processe...
Inversion using adaptive physics‐based neural network: Application to magnetotelluric inversion
Inversion using adaptive physics‐based neural network: Application to magnetotelluric inversion
ABSTRACTA new trend to solve geophysical problems aims to combine the advantages of deterministic inversion with neural network inversion. The neural networks applied to geophysica...
Contributions to ionospheric electron density retrieval
Contributions to ionospheric electron density retrieval
La transformada de Abel es una técnica de inversión usada frecuentemente en radio ocultaciones (RO) que, en el contexto ionosférico, permite deducir densidades electrónicas a parti...


