Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

L‐type Ca2+ channel opener BayK 8644‐induced Ca2+ influx and Ca2+ release in human oral cancer cells (OC2)

View through CrossRef
AbstractThe effect of BayK 8644, a chemical widely used to activate L‐type Ca2+ channels, on cytosolic free Ca2+ concentrations ([Ca2+]i) in human oral cancer cells (OC2) has not been explored to date. The present study examined whether BayK 8644 altered basal [Ca2+]i levels in suspended OC2 cells by using fura‐2. BayK 8644 (10 pM–10 µM) increased [Ca2+]i in a concentration‐dependent manner. The Ca2+ signal was reduced partly by removing extracellular Ca2+. BayK 8644‐induced Ca2+ influx was blocked by nifedipine, but was not altered by the store‐operated Ca2+ entry inhibitors, econazole and SKF96365; protein kinase C modulators phorbol 12‐myristate 13‐acetate (PMA) and GF109203X; the protein kinase A inhibitor H89; and the phospholipase A2 inhibitor, aristolochic acid. In Ca2+‐free medium, after pretreatment with 1 µM BayK 8644, 1 µM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor)‐induced [Ca2+]i rises were abolished; and conversely, thapsigargin pretreatment abolished BayK 8644‐induced [Ca2+]i rises. Inhibition of phospholipase C with U73122 did not change BayK 8644‐induced [Ca2+]i rises. Collectively, in OC2 cells, BayK 8644 induced [Ca2+]i rises by causing phospholipase C‐independent Ca2+ release from the endoplasmic reticulum; and Ca2+ influx via L‐type Ca2+ channels. Drug Dev Res 69: 2008. © 2008 Wiley‐Liss, Inc.
Title: L‐type Ca2+ channel opener BayK 8644‐induced Ca2+ influx and Ca2+ release in human oral cancer cells (OC2)
Description:
AbstractThe effect of BayK 8644, a chemical widely used to activate L‐type Ca2+ channels, on cytosolic free Ca2+ concentrations ([Ca2+]i) in human oral cancer cells (OC2) has not been explored to date.
The present study examined whether BayK 8644 altered basal [Ca2+]i levels in suspended OC2 cells by using fura‐2.
BayK 8644 (10 pM–10 µM) increased [Ca2+]i in a concentration‐dependent manner.
The Ca2+ signal was reduced partly by removing extracellular Ca2+.
BayK 8644‐induced Ca2+ influx was blocked by nifedipine, but was not altered by the store‐operated Ca2+ entry inhibitors, econazole and SKF96365; protein kinase C modulators phorbol 12‐myristate 13‐acetate (PMA) and GF109203X; the protein kinase A inhibitor H89; and the phospholipase A2 inhibitor, aristolochic acid.
In Ca2+‐free medium, after pretreatment with 1 µM BayK 8644, 1 µM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor)‐induced [Ca2+]i rises were abolished; and conversely, thapsigargin pretreatment abolished BayK 8644‐induced [Ca2+]i rises.
Inhibition of phospholipase C with U73122 did not change BayK 8644‐induced [Ca2+]i rises.
Collectively, in OC2 cells, BayK 8644 induced [Ca2+]i rises by causing phospholipase C‐independent Ca2+ release from the endoplasmic reticulum; and Ca2+ influx via L‐type Ca2+ channels.
Drug Dev Res 69: 2008.
© 2008 Wiley‐Liss, Inc.

Related Results

Spatial And Functional Coupling of The L‐Type Ca2+ Channel Cav1.2 with Ca2+‐Induced Ca2+ Release And cAMP Accumulation in INS‐1 cells
Spatial And Functional Coupling of The L‐Type Ca2+ Channel Cav1.2 with Ca2+‐Induced Ca2+ Release And cAMP Accumulation in INS‐1 cells
Exposure of pancreatic β‐cells to glucose generates concomitant oscillations in Ca2+ and cAMP which regulate insulin secretion, an essential function of β‐cells that promotes gluco...
Na+/Ca2+ exchange current in ventricular myocytes of fish heart: contribution to sarcolemmal Ca2+ influx
Na+/Ca2+ exchange current in ventricular myocytes of fish heart: contribution to sarcolemmal Ca2+ influx
ABSTRACT Influx of extracellular Ca2+ plays a major role in the activation of contraction in fish cardiac cells. The relative contributions of Na+/Ca2+ exchange and ...
Ca2+ entry through Na(+)‐Ca2+ exchange can trigger Ca2+ release from Ca2+ stores in Na(+)‐loaded guinea‐pig coronary myocytes.
Ca2+ entry through Na(+)‐Ca2+ exchange can trigger Ca2+ release from Ca2+ stores in Na(+)‐loaded guinea‐pig coronary myocytes.
1. The ionized cytosolic calcium concentration ([Ca2+]i) was monitored in voltage‐clamped coronary myocytes at 36 degrees C and 2.5 mM [Ca2+]o using the Ca2+ indicator indo‐1. [Ca2...
Computational analysis of Ca2+ dynamics in isolated cardiac mitochondria predicts two distinct modes of Ca2+ uptake
Computational analysis of Ca2+ dynamics in isolated cardiac mitochondria predicts two distinct modes of Ca2+ uptake
Key points Cytosolic, but not matrix, Mg2+ inhibits mitochondrial Ca2+ uptake through the Ca2+ uniporter (CU). The majority of mitochondrial Ca2+ uptake under physiological levels ...
Regulation of cochlear hair cell function by intracellular calcium stores
Regulation of cochlear hair cell function by intracellular calcium stores
IntroductionMammalian hearing depends on the dual mechanosensory and motor functions of cochlear hair cells. Both these functions may be regulated by Ca2+ release from intracellula...
Brevity of the Ca2+ Microdomain and Active Zone Geometry Prevent Ca2+-Sensor Saturation for Neurotransmitter Release
Brevity of the Ca2+ Microdomain and Active Zone Geometry Prevent Ca2+-Sensor Saturation for Neurotransmitter Release
The brief time course of the calcium (Ca2+) channel opening combined with the molecular-level colocalization of Ca2+ channels and synaptic vesicles in presynaptic terminals predict...
Lindane (γ‐Hexachlorocyclohexane) Induces Internal Ca2+ Release and Capacitative Ca2+ Entry in Madin‐Darby Canine Kidney Cells
Lindane (γ‐Hexachlorocyclohexane) Induces Internal Ca2+ Release and Capacitative Ca2+ Entry in Madin‐Darby Canine Kidney Cells
Abstract:The effect of lindane (γ‐hexachlorocyclohexane), an organochlorine pesticide, on Ca2+ mobilization in Madin‐Darby canine kidney cells was examined by fluorimetry using fur...

Back to Top