Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Layout Effects on High Frequency and Noise Parameters in MOSFETs

View through CrossRef
<p>This study reviews related studies on the impact of the layout dependent effects on high frequency and RF noise parameter performances, carried out over the past decade. It specifically focuses on the doughnut and multi- finger layouts. The doughnut style involves the polygonal and the 4- sided techniques, while the multi-finger involving the narrow-oxide diffusion (OD) and multi-OD. The polygonal versus 4-sided doughnut, and the narrow-OD with multi-fingers versus multi-OD with multi- fingers are reviewed in this study. The high frequency parameters, which are of concern in this study, are the cut- off frequency (f<sub>T</sub>) and the maximum frequency (f<sub>MAX</sub>), whereas the noise parameters involved are noise resistance (R<sub>N</sub>) and the minimum noise figure (NF<sub>min</sub>). In addition, MOSFET parameters, which are affected by the layout style that in turn may contribute to the changes in these high frequency, and noise parameters are also detailed. Such parameters include transconductance (G<sub>m</sub>); gate resistance (R<sub>g</sub>); effective mobility (μ<sub>eff</sub>); and parasitic capacitances (c<sub>gg</sub> and c<sub>gd</sub>). Investigation by others has revealed that the polygonal doughnut may have a larger total area in comparison with the 4- sided doughnut. It is also found by means of this review that the multi-finger layout style with narrow-OD and high number of fingers may have the best performance in f<sub>T</sub> and f<sub>MAX</sub>, owing partly to the improvement in G<sub>m</sub>, μ<sub>eff</sub>, c<sub>gg</sub>, c<sub>gd</sub> and low frequency noise (LFN). A multi-OD with a lower number of fingers may lead to a lower performance in f<sub>T</sub> due to a lower G<sub>m</sub>. Upon comparing the doughnut and the multi-finger layout styles, the doughnuts appeared to perform better than a standard multi-finger layout for f<sub>T</sub>, f<sub>MAX</sub>, G<sub>m</sub> and μ<sub>eff</sub> but are poorer in terms of LFN. It can then be concluded that the narrow-OD multi-finger may cause the increase of c<sub>gg</sub> as the transistor becomes narrower, whereas a multi-OD multi-finger may have high R<sub>g</sub> and therefore may lead to the increase of f<sub>T</sub> and f<sub>MAX</sub> as the transistor becomes narrower. Besides, the doughnut layout style has a higher G<sub>m</sub> and f<sub>T</sub>, leading to larger μ<sub>eff</sub> from the elimination of shallow trench isolation (STI) stress.</p>
Title: Layout Effects on High Frequency and Noise Parameters in MOSFETs
Description:
<p>This study reviews related studies on the impact of the layout dependent effects on high frequency and RF noise parameter performances, carried out over the past decade.
It specifically focuses on the doughnut and multi- finger layouts.
The doughnut style involves the polygonal and the 4- sided techniques, while the multi-finger involving the narrow-oxide diffusion (OD) and multi-OD.
The polygonal versus 4-sided doughnut, and the narrow-OD with multi-fingers versus multi-OD with multi- fingers are reviewed in this study.
The high frequency parameters, which are of concern in this study, are the cut- off frequency (f<sub>T</sub>) and the maximum frequency (f<sub>MAX</sub>), whereas the noise parameters involved are noise resistance (R<sub>N</sub>) and the minimum noise figure (NF<sub>min</sub>).
In addition, MOSFET parameters, which are affected by the layout style that in turn may contribute to the changes in these high frequency, and noise parameters are also detailed.
Such parameters include transconductance (G<sub>m</sub>); gate resistance (R<sub>g</sub>); effective mobility (μ<sub>eff</sub>); and parasitic capacitances (c<sub>gg</sub> and c<sub>gd</sub>).
Investigation by others has revealed that the polygonal doughnut may have a larger total area in comparison with the 4- sided doughnut.
It is also found by means of this review that the multi-finger layout style with narrow-OD and high number of fingers may have the best performance in f<sub>T</sub> and f<sub>MAX</sub>, owing partly to the improvement in G<sub>m</sub>, μ<sub>eff</sub>, c<sub>gg</sub>, c<sub>gd</sub> and low frequency noise (LFN).
A multi-OD with a lower number of fingers may lead to a lower performance in f<sub>T</sub> due to a lower G<sub>m</sub>.
Upon comparing the doughnut and the multi-finger layout styles, the doughnuts appeared to perform better than a standard multi-finger layout for f<sub>T</sub>, f<sub>MAX</sub>, G<sub>m</sub> and μ<sub>eff</sub> but are poorer in terms of LFN.
It can then be concluded that the narrow-OD multi-finger may cause the increase of c<sub>gg</sub> as the transistor becomes narrower, whereas a multi-OD multi-finger may have high R<sub>g</sub> and therefore may lead to the increase of f<sub>T</sub> and f<sub>MAX</sub> as the transistor becomes narrower.
Besides, the doughnut layout style has a higher G<sub>m</sub> and f<sub>T</sub>, leading to larger μ<sub>eff</sub> from the elimination of shallow trench isolation (STI) stress.
</p>.

Related Results

Mechanism of suppressing noise intensity of squeezed state enhancement
Mechanism of suppressing noise intensity of squeezed state enhancement
This research focuses on advanced noise suppression technologies for high-precision measurement systems, particularly addressing the limitations of classical noise reducing approac...
A Comprehensive Review of Noise Measurement, Standards, Assessment, Geospatial Mapping and Public Health
A Comprehensive Review of Noise Measurement, Standards, Assessment, Geospatial Mapping and Public Health
Noise pollution is an emerging issue in cities around the world. Noise is a pernicious pollutant in urban landscapes mainly due to the increasing number of city inhabitants, road a...
Research Progress of Noise in High-Speed Cutting Machining
Research Progress of Noise in High-Speed Cutting Machining
High-speed cutting technology has become a development trend in the material processing industry. However, high-intensity noise generated during high-speed cutting exerts a potenti...
Perancangan Tata Letak Fasilitas Metode CRAFT (Computerized Relative Allocation Facility Technique)
Perancangan Tata Letak Fasilitas Metode CRAFT (Computerized Relative Allocation Facility Technique)
Abstract. The layout of production facilities is a crucial factor in supporting the smooth operation of manufacturing processes. CV. XYZ faces issues related to inefficient facilit...
Noise improves the association between effects of local stimulation and structural degree of brain networks
Noise improves the association between effects of local stimulation and structural degree of brain networks
AbstractStimulation to local areas remarkably affects brain activity patterns, which can be exploited to investigate neural bases of cognitive function and modify pathological brai...
Criteria for Accurate Measurement of Charge-Pumping Current in 4H-SiC MOSFETs
Criteria for Accurate Measurement of Charge-Pumping Current in 4H-SiC MOSFETs
This paper describes the influence of the geometric component in the charge-pumping measurement of 4H-SiC MOSFETs. Charge-pumping measurements were conducted on 4H-SiC MOSFETs with...
The Control Strategy Research on Reduction of High-Frequency Noise and Vibration for Permanent Magnet Synchronous Motor
The Control Strategy Research on Reduction of High-Frequency Noise and Vibration for Permanent Magnet Synchronous Motor
The electric vehicles are fast developed as the demand for energy conservation and environment protection. The permanent magnet synchronous motors (PMSM) are widely used in electri...
BDNFF - A Novel Bayesian Adaptive Filtering Algorithm for Removing Dynamic Pattern Noise in VHRI Satellite Images
BDNFF - A Novel Bayesian Adaptive Filtering Algorithm for Removing Dynamic Pattern Noise in VHRI Satellite Images
One of the main challenges in remote sensing data is noise, which can negatively impact data quality and analysis results. Pattern noise can have different shapes in the Frequency ...

Back to Top