Javascript must be enabled to continue!
Dielectric properties of hydrogen-terminated Si(111) ultrathin films
View through CrossRef
Dielectric properties of Si(111) ultrathin films have been investigated using first-principles ground-states calculations in external electrostatic fields. With increasing thickness of Si(111) ultrathin films, the optical dielectric constant evaluated at the center of the slab converges to the experimental bulk dielectric constant at a thickness of only eight bilayers, while the energy gap of the slab is still larger than that of bulk Si. The converged theoretical dielectric constant for bulk Si is only 6.2% higher than the experimental one. Furthermore, spatial variations of the dielectric constant have also been evaluated using the position-dependent macroscopic field given by a clear-cut definition. The results show that the dielectric constant is reduced distinctly at the first few bilayers from the surface, which stems from the penetration of depolarized charges induced at the surface. Such an effective reduction of the depolarization field near the surface is one of the reasons for the decrease in optical dielectric constant for the ultrathin films.
Title: Dielectric properties of hydrogen-terminated Si(111) ultrathin films
Description:
Dielectric properties of Si(111) ultrathin films have been investigated using first-principles ground-states calculations in external electrostatic fields.
With increasing thickness of Si(111) ultrathin films, the optical dielectric constant evaluated at the center of the slab converges to the experimental bulk dielectric constant at a thickness of only eight bilayers, while the energy gap of the slab is still larger than that of bulk Si.
The converged theoretical dielectric constant for bulk Si is only 6.
2% higher than the experimental one.
Furthermore, spatial variations of the dielectric constant have also been evaluated using the position-dependent macroscopic field given by a clear-cut definition.
The results show that the dielectric constant is reduced distinctly at the first few bilayers from the surface, which stems from the penetration of depolarized charges induced at the surface.
Such an effective reduction of the depolarization field near the surface is one of the reasons for the decrease in optical dielectric constant for the ultrathin films.
Related Results
Alternative Entrances: Phillip Noyce and Sydney’s Counterculture
Alternative Entrances: Phillip Noyce and Sydney’s Counterculture
Phillip Noyce is one of Australia’s most prominent film makers—a successful feature film director with both iconic Australian narratives and many a Hollywood blockbuster under his ...
High tunable dielectric properties of Ce and Mg alternately doped Ba0.6Sr0.4TiO3 films
High tunable dielectric properties of Ce and Mg alternately doped Ba0.6Sr0.4TiO3 films
For barium strontium titanate (Ba0.6Ti0.4TiO3, BST) films used in tunable microwave devices, they must have excellent structural characteristics and outstanding combination of diel...
Spray Coated Nanocellulose Films Productions, Characterization and Application
Spray Coated Nanocellulose Films Productions, Characterization and Application
Nanocellulose (NC) is a biodegradable, renewable and sustainable material. It has strong potential to use as a functional material in various applications such as barriers, coating...
Optical transparency and electrical conductivity of nonstoichiometric ultrathin InxOy films
Optical transparency and electrical conductivity of nonstoichiometric ultrathin InxOy films
The effect of thickness and composition on the electrical conductivity and optical transparency, mainly in the infrared, of ultrathin InxOy films was studied. InxOy films 35–470 Å ...
Research progress of hydrogen tunneling in two-dimensional materials
Research progress of hydrogen tunneling in two-dimensional materials
One-atom-thick material such as graphene, graphene derivatives and graphene-like materials, usually has a dense network lattice structure and therefore dense distribution of electr...
The Challenges of Underground Hydrogen Gas Storage
The Challenges of Underground Hydrogen Gas Storage
ABSTRACT:
While hydrogen as a gas (H2) has been stored in salt caverns on the American Gulf Coast for the last 40 years, it’s attributes are a challenge for under...
“Nouvelle-Aquitaine” Region : The birth of natural hydrogen exploration in France ?
“Nouvelle-Aquitaine” Region : The birth of natural hydrogen exploration in France ?
As a pioneer, 45-8 ENERGY focuses on exploring and producing eco-responsible industrial gases: helium and natural hydrogen. , as well as the resources that can be associated with.H...
Review of Hydrogen Storage in Solid-State Materials
Review of Hydrogen Storage in Solid-State Materials
As a kind of clean energy, hydrogen energy has great potential to reduce environmental pollution and provide efficient energy conversion, and the key to its efficient utilization i...

