Javascript must be enabled to continue!
How Good Is a Tactical-Grade GNSS + INS (MEMS and FOG) in a 20-m Bathymetric Survey?
View through CrossRef
This paper examines how tactical-grade Inertial Navigation Systems (INS), aided by Global Navigation Satellite System (GNSS) modules, vary from a survey-grade system in the bathymetric mapping in depths less than 20 m. The motivation stems from the advancements in sensor developments, measurement processing algorithms, and the proliferation of autonomous and uncrewed surface vehicles often seeking to use tactical-grade systems for high-quality bathymetric products. While the performance of survey-grade GNSS + INS is well-known to the hydrographic and marine science community, the performance and limitations of the tactical-grade micro-electro-mechanical system (MEMS) and tactical-grade fiber-optic-gyro (FOG) INS aided with GNSS require some study to answer the following questions: (1) How close or far is the tactical-grade GNSS + INS performance from the survey-grade systems? (2) For what survey order (IHO S-44 6th ed.) can a user deploy them? (3) Can we use them for navigation chart production? We attempt to answer these questions by deploying two tactical-grade GNSS + INS units (MEMS and FOG) and a survey-grade GNSS + INS on a survey boat. All systems collected data while operating a multibeam system with the lever-arm offsets accurately determined using a total station. The tactical-grade GNSS + INSs shared one pair of antennas for heading, while the survey-grade system used an independent antenna pair. We analyze the GNSS + INS results in sequence, examine the patch-test results, and the sensor-specific SBET-integrated bathymetric surfaces as metrics for determining the tactical-grade GNSS + INSs’ reliability. In addition, we evaluate the multibeam’s sounding uncertainties at different beam angles. The bathymetric surfaces using the tactical-grade navigation solutions are within 15 cm of the surface generated with the survey-grade solutions.
Title: How Good Is a Tactical-Grade GNSS + INS (MEMS and FOG) in a 20-m Bathymetric Survey?
Description:
This paper examines how tactical-grade Inertial Navigation Systems (INS), aided by Global Navigation Satellite System (GNSS) modules, vary from a survey-grade system in the bathymetric mapping in depths less than 20 m.
The motivation stems from the advancements in sensor developments, measurement processing algorithms, and the proliferation of autonomous and uncrewed surface vehicles often seeking to use tactical-grade systems for high-quality bathymetric products.
While the performance of survey-grade GNSS + INS is well-known to the hydrographic and marine science community, the performance and limitations of the tactical-grade micro-electro-mechanical system (MEMS) and tactical-grade fiber-optic-gyro (FOG) INS aided with GNSS require some study to answer the following questions: (1) How close or far is the tactical-grade GNSS + INS performance from the survey-grade systems? (2) For what survey order (IHO S-44 6th ed.
) can a user deploy them? (3) Can we use them for navigation chart production? We attempt to answer these questions by deploying two tactical-grade GNSS + INS units (MEMS and FOG) and a survey-grade GNSS + INS on a survey boat.
All systems collected data while operating a multibeam system with the lever-arm offsets accurately determined using a total station.
The tactical-grade GNSS + INSs shared one pair of antennas for heading, while the survey-grade system used an independent antenna pair.
We analyze the GNSS + INS results in sequence, examine the patch-test results, and the sensor-specific SBET-integrated bathymetric surfaces as metrics for determining the tactical-grade GNSS + INSs’ reliability.
In addition, we evaluate the multibeam’s sounding uncertainties at different beam angles.
The bathymetric surfaces using the tactical-grade navigation solutions are within 15 cm of the surface generated with the survey-grade solutions.
Related Results
GNSS reflectometry for land remote sensing applications
GNSS reflectometry for land remote sensing applications
Soil moisture and vegetation biomass are two essential parameters from a scienti c and economical point of view. On one hand, they are key for the understanding of the hydrological...
Dense Fog Burst Reinforcement over Eastern China
Dense Fog Burst Reinforcement over Eastern China
<p>Fog can be hazardous weather. Dense and polluted fog is especially known to impact transportation, air quality, and public health. Low visibilities on fog days thr...
Dynamic stochastic modeling for inertial sensors
Dynamic stochastic modeling for inertial sensors
Es ampliamente conocido que los modelos de error para sensores inerciales tienen dos componentes: El primero es un componente determinista que normalmente es calibrado por el fabri...
Fog in Sofia 2010–2019: Objective Circulation Classification and Fog Indices
Fog in Sofia 2010–2019: Objective Circulation Classification and Fog Indices
Low visibility caused by fog events can lead to disruption of every type of public transportation, and even loss of life. The focus of this study is the synoptic conditions associa...
A MEMS IMU De-Noising Method Using Long Short Term Memory Recurrent Neural Networks (LSTM-RNN)
A MEMS IMU De-Noising Method Using Long Short Term Memory Recurrent Neural Networks (LSTM-RNN)
Microelectromechanical Systems (MEMS) Inertial Measurement Unit (IMU) containing a three-orthogonal gyroscope and three-orthogonal accelerometer has been widely utilized in positio...
Fog dissipation through ground warming monitored by satellite image : an approach to support regional forecasting 
Fog dissipation through ground warming monitored by satellite image : an approach to support regional forecasting 
<p>By reducing the atmospheric visibility, fog events have strong impacts on several humans activities. Transport security, military operations, air quality forecast ...
MODERN IDEAS ABOUT THE TACTICAL TRAINING OF YOUNG SOCCER PLAYERS
MODERN IDEAS ABOUT THE TACTICAL TRAINING OF YOUNG SOCCER PLAYERS
Introduction. There is a pronounced contradiction between scientific and methodological data and modern approaches in training young of football players. This aspect actualizes the...
Integration and Simulations of INS/GNSS System using the Approach of Carrier Phase Measurements
Integration and Simulations of INS/GNSS System using the Approach of Carrier Phase Measurements
<p class="MsoNormal" style="margin-top: 12.0pt; margin-right: 0in; margin-bottom: 6.0pt; margin-left: 0in; text-align: justify;"><em><span style="font-size: 9.0pt; f...

