Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Currents induced by long waves propagating towards a beach over a wavy bed

View through CrossRef
For the understanding of longshore currents along a natural beach, the effects of bottom unevenness are considered to be important, especially for the flow in the swash zone. Currents in the swash zone are strongly influenced by the bed slope because the effect of gravity overwhelms the effect of the depth change. In the present paper, we investigate these effects and focus on waves propagating from offshore over a flat ocean basin of constant depth to a beach with a sloping wavy bottom. The waves are incident at a small angle to the beach normal, and the bed slope in the alongshore direction is varied slowly. To simplify the problem, only cnoidal waves and solitary waves are considered and the bed level is varied sinusoidally in the longshore direction.A perturbation method is applied to the two-dimensional nonlinear shallow water equation (two-dimensional NLSWE) for the wave motion in order to generate a more simplified model of wave dynamics consisting of a one-dimensional NLSWE for the direction normal to the beach and an equation for the alongshore direction. The first equation, the one-dimensional NLSWE, is solved by Carrier & Greenspan's transformation. The solution of the second one is found by extending Brocchini & Peregrine's solution for a flat beach. Two methods for the solution of the one- dimensional NLSWE are introduced in order to get a solution applicable to large-amplitude swash motions, where the amplitude is comparable to the beach length. One is the Maclaurin expansion of the solution around the moving shoreline, and the other is Riemann's representation of the solution, which exactly satisfies the one-dimensional NLSWE and the boundary conditions. After doing a consistency check by confirming that Riemann's method, a numerical solution, agrees with the exact solution for an infinitely long, sloping beach, we assumed that the Maclaurin series solution can also describe wave motion in the swash zone properly not only for this model but also for our ‘wavy’, finite beach model.The solution obtained from the Maclaurin series is then plugged into the equation for the alongshore direction to calculate the shore currents induced by wave run-up and back-wash motions, where a ‘weakly two-dimensional solution’ is derived from geometrical considerations. The results show that since the water depth near the shoreline is comparable to the bed level fluctuations, the flow is strongly affected by the bed unevenness, leading to recognizable changes in shoreline movement and the time-averaged velocity and the mass flux of the flow in the swash zone. More specifically, the inhomogeneity of the alongshore mass flux generates offshore currents because of the continuity condition for the fluid mass.
Title: Currents induced by long waves propagating towards a beach over a wavy bed
Description:
For the understanding of longshore currents along a natural beach, the effects of bottom unevenness are considered to be important, especially for the flow in the swash zone.
Currents in the swash zone are strongly influenced by the bed slope because the effect of gravity overwhelms the effect of the depth change.
In the present paper, we investigate these effects and focus on waves propagating from offshore over a flat ocean basin of constant depth to a beach with a sloping wavy bottom.
The waves are incident at a small angle to the beach normal, and the bed slope in the alongshore direction is varied slowly.
To simplify the problem, only cnoidal waves and solitary waves are considered and the bed level is varied sinusoidally in the longshore direction.
A perturbation method is applied to the two-dimensional nonlinear shallow water equation (two-dimensional NLSWE) for the wave motion in order to generate a more simplified model of wave dynamics consisting of a one-dimensional NLSWE for the direction normal to the beach and an equation for the alongshore direction.
The first equation, the one-dimensional NLSWE, is solved by Carrier & Greenspan's transformation.
The solution of the second one is found by extending Brocchini & Peregrine's solution for a flat beach.
Two methods for the solution of the one- dimensional NLSWE are introduced in order to get a solution applicable to large-amplitude swash motions, where the amplitude is comparable to the beach length.
One is the Maclaurin expansion of the solution around the moving shoreline, and the other is Riemann's representation of the solution, which exactly satisfies the one-dimensional NLSWE and the boundary conditions.
After doing a consistency check by confirming that Riemann's method, a numerical solution, agrees with the exact solution for an infinitely long, sloping beach, we assumed that the Maclaurin series solution can also describe wave motion in the swash zone properly not only for this model but also for our ‘wavy’, finite beach model.
The solution obtained from the Maclaurin series is then plugged into the equation for the alongshore direction to calculate the shore currents induced by wave run-up and back-wash motions, where a ‘weakly two-dimensional solution’ is derived from geometrical considerations.
The results show that since the water depth near the shoreline is comparable to the bed level fluctuations, the flow is strongly affected by the bed unevenness, leading to recognizable changes in shoreline movement and the time-averaged velocity and the mass flux of the flow in the swash zone.
More specifically, the inhomogeneity of the alongshore mass flux generates offshore currents because of the continuity condition for the fluid mass.

Related Results

How does bed load transport influence the longitudinal profile of reservoir sedimentation?
How does bed load transport influence the longitudinal profile of reservoir sedimentation?
The construction of the reservoir has destroyed the equilibrium of the natural river and promoted the siltation of a large amount of sediment in the reservoir. The longitudinal pro...
Oscillatory frequencies in spatiotemporal system with local inhomogeneity
Oscillatory frequencies in spatiotemporal system with local inhomogeneity
Target waves usually emit concentric circular waves, whereas spiral waves rotate around a central core (topological defect) region, the two forms of waves are closely related due t...
COASTAL ENGINEERING 2000
COASTAL ENGINEERING 2000
*** Available Only Through ASCE *** http://ascelibrary.aip.org/browse/asce/vol_title.jsp?scode=C This Proceedings contains more than 300 papers pre...
Gravity induced vertical motion of dense fluids into saturated granular beds
Gravity induced vertical motion of dense fluids into saturated granular beds
<p>Gravity currents propagating over and within porous layers occurs in natural environments and in industrial processes. The particular modes by which the dense flui...
Annual and seasonal shore morphodynamics of a Cuspate Foreland: Les Grands Sables (Groix Island, France) 
Annual and seasonal shore morphodynamics of a Cuspate Foreland: Les Grands Sables (Groix Island, France) 
<p>Studies on the dynamics of convex beaches "Cuspate foreland" have shown that these formations are directly influenced by the joint action of clim...
On the Heat Transfer Enhancement of Plate Fin Heat Exchanger
On the Heat Transfer Enhancement of Plate Fin Heat Exchanger
The plate fin heat exchanger is the compact heat exchanger applied in many industries because of its high thermal performance. To enhance the heat transfer of plate fin heat exchan...
STRATEGI PEMASARAN DALAM PERSEKTIF MARKETING SYARIAH PADA UKM SALMA BED ALKES
STRATEGI PEMASARAN DALAM PERSEKTIF MARKETING SYARIAH PADA UKM SALMA BED ALKES
Abstrak Peningkatan persaingan dan perubahan dinamika pasar menuntut UKM untuk mengembangkan strategi pemasaran yang efisien dan efektif. Dengan persaingan yang ketat menjadi satu...
CFD-Based Modeling of Kraft Char Beds • Part 1: Char Bed Burning Model
CFD-Based Modeling of Kraft Char Beds • Part 1: Char Bed Burning Model
Understanding the physical and chemical phenomena governing char bed burning is important for stable and efficient operation of the recovery boiler. Stand-alone char bed models hav...

Back to Top