Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Rational proofs for quantum computing

View through CrossRef
It is an open problem whether a classical client can delegate quantum computing to an efficient remote quantum server in such a way that the correctness of quantum computing is somehow guaranteed. Several protocols for verifiable delegated quantum computing have been proposed, but the client is not completely free from any quantum technology: the client has to generate or measure single-qubit states. In this paper, we show that the client can be completely classical if the server is rational (i.e., economically motivated), following the ``rational proofs" framework of Azar and Micali. More precisely, we consider the following protocol. The server first sends the client a message allegedly equal to the solution of the problem that the client wants to solve. The client then gives the server a monetary reward whose amount is calculated in classical probabilistic polynomial-time by using the server's message as an input. The reward function is constructed in such a way that the expectation value of the reward (the expectation over the client's probabilistic computing) is maximum when the server's message is the correct solution to the problem. The rational server who wants to maximize his/her profit therefore has to send the correct solution to the client.
Title: Rational proofs for quantum computing
Description:
It is an open problem whether a classical client can delegate quantum computing to an efficient remote quantum server in such a way that the correctness of quantum computing is somehow guaranteed.
Several protocols for verifiable delegated quantum computing have been proposed, but the client is not completely free from any quantum technology: the client has to generate or measure single-qubit states.
In this paper, we show that the client can be completely classical if the server is rational (i.
e.
, economically motivated), following the ``rational proofs" framework of Azar and Micali.
More precisely, we consider the following protocol.
The server first sends the client a message allegedly equal to the solution of the problem that the client wants to solve.
The client then gives the server a monetary reward whose amount is calculated in classical probabilistic polynomial-time by using the server's message as an input.
The reward function is constructed in such a way that the expectation value of the reward (the expectation over the client's probabilistic computing) is maximum when the server's message is the correct solution to the problem.
The rational server who wants to maximize his/her profit therefore has to send the correct solution to the client.

Related Results

Advancements in Quantum Computing and Information Science
Advancements in Quantum Computing and Information Science
Abstract: The chapter "Advancements in Quantum Computing and Information Science" explores the fundamental principles, historical development, and modern applications of quantum co...
Advanced frameworks for fraud detection leveraging quantum machine learning and data science in fintech ecosystems
Advanced frameworks for fraud detection leveraging quantum machine learning and data science in fintech ecosystems
The rapid expansion of the fintech sector has brought with it an increasing demand for robust and sophisticated fraud detection systems capable of managing large volumes of financi...
Integrating quantum neural networks with machine learning algorithms for optimizing healthcare diagnostics and treatment outcomes
Integrating quantum neural networks with machine learning algorithms for optimizing healthcare diagnostics and treatment outcomes
The rapid advancements in artificial intelligence (AI) and quantum computing have catalyzed an unprecedented shift in the methodologies utilized for healthcare diagnostics and trea...
Revolutionizing multimodal healthcare diagnosis, treatment pathways, and prognostic analytics through quantum neural networks
Revolutionizing multimodal healthcare diagnosis, treatment pathways, and prognostic analytics through quantum neural networks
The advent of quantum computing has introduced significant potential to revolutionize healthcare through quantum neural networks (QNNs), offering unprecedented capabilities in proc...
Quantum information outside quantum information
Quantum information outside quantum information
Quantum theory, as counter-intuitive as a theory can get, has turned out to make predictions of the physical world that match observations so precisely that it has been described a...
Quantum Computing Techniques for Numerical Linear Algebra in Computational Mathematics
Quantum Computing Techniques for Numerical Linear Algebra in Computational Mathematics
Quantum computing is a new and exciting area of computational mathematics that has the ability to solve very hard problems that traditional computing methods have not been able to ...
Quantum metamaterials: Applications in quantum information science
Quantum metamaterials: Applications in quantum information science
Metamaterials are a class of artificially engineered materials with periodic structures possessing exceptional properties not found in conventional materials. This definition can b...
Quantum Communication and Cybersecurity
Quantum Communication and Cybersecurity
Abstract: This book presents a comprehensive and interdisciplinary examination of the convergence between quantum information science and cybersecurity. It addresses the foundation...

Back to Top