Javascript must be enabled to continue!
Feature Extraction Optimization with Combination 2D-Discrete Wavelet Transform and Gray Level Co-Occurrence Matrix for Classifying Normal and Abnormal Breast Tumors
View through CrossRef
Breast cancer is one of the leading causes of death worldwide among women. According to GLOBOCAN Data, the International Agency for Research on Cancer (IARC), in 2012 there were 14.067.894 new cases of cancer and 8.201.575 deaths from cancer worldwide (Kementerian Kesehatan Republik Indonesia [KemenkesRI], 2015). Mammography is the most common and effective technique for detecting breast tumors. However, mammograms have poor image quality with low contrast. A Computer-Aided Detection (CAD) system has been developed to help radiologists effectively detect lesions on mammograms that indicate the presence of breast tumor. The feature extraction method in the CAD system is an important part of getting high accuracy results in classifying normal and abnormal breast tumors. By using the combination of 2D-Discrete wavelet transform and Gray-Level Co-Occurrence Matrix (GLCM) obtained an accuracy value of 100% on MIAS and UDIAT Database in classifying the presence of masses in the mammogram image and obtained an accuracy value of 93.8% for classifying normal, benign, and malignant. The proposed method has the potential to identify the presence of masses in the mammogram image as a decision support system to the radiologist.
Canadian Center of Science and Education
Title: Feature Extraction Optimization with Combination 2D-Discrete Wavelet Transform and Gray Level Co-Occurrence Matrix for Classifying Normal and Abnormal Breast Tumors
Description:
Breast cancer is one of the leading causes of death worldwide among women.
According to GLOBOCAN Data, the International Agency for Research on Cancer (IARC), in 2012 there were 14.
067.
894 new cases of cancer and 8.
201.
575 deaths from cancer worldwide (Kementerian Kesehatan Republik Indonesia [KemenkesRI], 2015).
Mammography is the most common and effective technique for detecting breast tumors.
However, mammograms have poor image quality with low contrast.
A Computer-Aided Detection (CAD) system has been developed to help radiologists effectively detect lesions on mammograms that indicate the presence of breast tumor.
The feature extraction method in the CAD system is an important part of getting high accuracy results in classifying normal and abnormal breast tumors.
By using the combination of 2D-Discrete wavelet transform and Gray-Level Co-Occurrence Matrix (GLCM) obtained an accuracy value of 100% on MIAS and UDIAT Database in classifying the presence of masses in the mammogram image and obtained an accuracy value of 93.
8% for classifying normal, benign, and malignant.
The proposed method has the potential to identify the presence of masses in the mammogram image as a decision support system to the radiologist.
Related Results
Breast Carcinoma within Fibroadenoma: A Systematic Review
Breast Carcinoma within Fibroadenoma: A Systematic Review
Abstract
Introduction
Fibroadenoma is the most common benign breast lesion; however, it carries a potential risk of malignant transformation. This systematic review provides an ove...
Desmoid-Type Fibromatosis of The Breast: A Case Series
Desmoid-Type Fibromatosis of The Breast: A Case Series
Abstract
IntroductionDesmoid-type fibromatosis (DTF), also called aggressive fibromatosis, is a rare, benign, locally aggressive condition. Mammary DTF originates from fibroblasts ...
Are Cervical Ribs Indicators of Childhood Cancer? A Narrative Review
Are Cervical Ribs Indicators of Childhood Cancer? A Narrative Review
Abstract
A cervical rib (CR), also known as a supernumerary or extra rib, is an additional rib that forms above the first rib, resulting from the overgrowth of the transverse proce...
On Flores Island, do "ape-men" still exist? https://www.sapiens.org/biology/flores-island-ape-men/
On Flores Island, do "ape-men" still exist? https://www.sapiens.org/biology/flores-island-ape-men/
<span style="font-size:11pt"><span style="background:#f9f9f4"><span style="line-height:normal"><span style="font-family:Calibri,sans-serif"><b><spa...
Performance Comparison of Hartley Transform with Hartley Wavelet and Hybrid Hartley Wavelet Transforms for Image Data Compression
Performance Comparison of Hartley Transform with Hartley Wavelet and Hybrid Hartley Wavelet Transforms for Image Data Compression
This paper proposes image compression using Hybrid Hartley wavelet transform. The paper compares the results of Hybrid Hartley wavelet transform with that of orthogonal Hartley tra...
Multilevel Wavelet Transform Based Sparsity Reduction for Compressive Sensing
Multilevel Wavelet Transform Based Sparsity Reduction for Compressive Sensing
Compressive sensing has become a popular technique in broad areas of science and engineering for data analysis, which leads to numerous applications in signal and image processing....
Differential Diagnosis of Neurogenic Thoracic Outlet Syndrome: A Review
Differential Diagnosis of Neurogenic Thoracic Outlet Syndrome: A Review
Abstract
Thoracic outlet syndrome (TOS) is a complex and often overlooked condition caused by the compression of neurovascular structures as they pass through the thoracic outlet. ...
Spanish Breast Cancer Research Group (GEICAM)
Spanish Breast Cancer Research Group (GEICAM)
This section provides current contact details and a summary of recent or ongoing clinical trials being coordinated by Spanish Breast Cancer Research Group (GEICAM). Clinical trials...

