Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Peter–Weyl Iwahori Algebras

View through CrossRef
AbstractThe Peter–Weyl idempotent $e_{\mathscr{P}}$ of a parahoric subgroup $\mathscr{P}$ is the sum of the idempotents of irreducible representations of $\mathscr{P}$ that have a nonzero Iwahori fixed vector. The convolution algebra associated with $e_{\mathscr{P}}$ is called a Peter–Weyl Iwahori algebra. We show that any Peter–Weyl Iwahori algebra is Morita equivalent to the Iwahori–Hecke algebra. Both the Iwahori–Hecke algebra and a Peter–Weyl Iwahori algebra have a natural conjugate linear anti-involution $\star$, and the Morita equivalence preserves irreducible hermitian and unitary modules. Both algebras have another anti-involution, denoted by $\bullet$, and the Morita equivalence preserves irreducible and unitary modules for $\bullet$.
Title: Peter–Weyl Iwahori Algebras
Description:
AbstractThe Peter–Weyl idempotent $e_{\mathscr{P}}$ of a parahoric subgroup $\mathscr{P}$ is the sum of the idempotents of irreducible representations of $\mathscr{P}$ that have a nonzero Iwahori fixed vector.
The convolution algebra associated with $e_{\mathscr{P}}$ is called a Peter–Weyl Iwahori algebra.
We show that any Peter–Weyl Iwahori algebra is Morita equivalent to the Iwahori–Hecke algebra.
Both the Iwahori–Hecke algebra and a Peter–Weyl Iwahori algebra have a natural conjugate linear anti-involution $\star$, and the Morita equivalence preserves irreducible hermitian and unitary modules.
Both algebras have another anti-involution, denoted by $\bullet$, and the Morita equivalence preserves irreducible and unitary modules for $\bullet$.

Related Results

Weyl semimetals in optical lattices: moving and merging of Weyl points, and hidden symmetry at Weyl points
Weyl semimetals in optical lattices: moving and merging of Weyl points, and hidden symmetry at Weyl points
Abstract We propose to realize Weyl semimetals in a cubic optical lattice. We find that there exist three distinct Weyl semimetal phases in the cubic optical lattice for ...
Peter-Weyl Theorem for Iwahori Groups and Highest Weight Categories
Peter-Weyl Theorem for Iwahori Groups and Highest Weight Categories
Abstract We study the algebra of functions on the Iwahori group via the category of graded bounded representations of the Iwahori Lie algebra. In particular, we identify ...
Finitely Presented Heyting Algebras
Finitely Presented Heyting Algebras
In this paper we study the structure of finitely presented Heyting<br />algebras. Using algebraic techniques (as opposed to techniques from proof-theory) we show that every s...
Weak pseudo-BCK algebras
Weak pseudo-BCK algebras
Abstract In this paper we define and study the weak pseudo-BCK algebras as generalizations of weak BCK-algebras, extending some results given by Cı⃖rulis for weak BC...
Malcev Yang-Baxter equation, weighted $\mathcal{O}$-operators on Malcev algebras and post-Malcev algebras
Malcev Yang-Baxter equation, weighted $\mathcal{O}$-operators on Malcev algebras and post-Malcev algebras
The purpose of this paper is to study the $\mathcal{O}$-operators on Malcev algebras and discuss the solutions of Malcev Yang-Baxter equation by $\mathcal{O}$-operators. Furthe...
WITHDRAWN: Roughness in L-algebras
WITHDRAWN: Roughness in L-algebras
Abstract The aim of this paper is to introduce rough approximation on L−algebras. We investigate the relationship between subalgebras, ideals and rough subalgebras, rough i...
On t-derivations of PMS-algebras
On t-derivations of PMS-algebras
Background PMS algebras are a type of algebraic structure that has been studied extensively in recent years. They are a generalization of several other algebraic structures, such a...
Generic Algebras and Kazhdan-Lusztig Theory for Monomial Groups
Generic Algebras and Kazhdan-Lusztig Theory for Monomial Groups
The Iwahori-Hecke algebras of Coxeter groups play a central role in the study of representations of semisimple Lie-type groups. An important tool is the combinatorial approach to r...

Back to Top