Javascript must be enabled to continue!
IMPLEMENTATION OF GEOGRAPHICALLY WEIGHTED LASSO (GWL) IN ANALYZING RICE PRODUCTION FACTORS IN INDONESIA
View through CrossRef
Geographically Weighted Lasso (GWL) is a combination of two regression methods, namely Geographically Weighted Regression (GWR) and Least Absolute Shringkage Selection Operator (LASSO). Both methods have their own uses. GWR is a regression that takes into account the geographical location aspect because the spatial heterogeneity test is not met. LASSO is a regression method to overcome multicollinearity in the data. The two problems are simultaneously contained in one regression model, namely the GWL method. This study will analyze the factors that affect rice production in 34 provinces in Indonesia by applying and interpreting the results of the Geographically Weighted Lasso method. The results of the analysis show that the coefficient of determination of the GWL model is 0.9703 so it can be concluded that the explanatory variables in this study can that the global level of rice production in each province in Indonesia is 97.03%.
Lembaga Penelitian dan Pengabdian kepada Masyarakat Universitas Riau
Title: IMPLEMENTATION OF GEOGRAPHICALLY WEIGHTED LASSO (GWL) IN ANALYZING RICE PRODUCTION FACTORS IN INDONESIA
Description:
Geographically Weighted Lasso (GWL) is a combination of two regression methods, namely Geographically Weighted Regression (GWR) and Least Absolute Shringkage Selection Operator (LASSO).
Both methods have their own uses.
GWR is a regression that takes into account the geographical location aspect because the spatial heterogeneity test is not met.
LASSO is a regression method to overcome multicollinearity in the data.
The two problems are simultaneously contained in one regression model, namely the GWL method.
This study will analyze the factors that affect rice production in 34 provinces in Indonesia by applying and interpreting the results of the Geographically Weighted Lasso method.
The results of the analysis show that the coefficient of determination of the GWL model is 0.
9703 so it can be concluded that the explanatory variables in this study can that the global level of rice production in each province in Indonesia is 97.
03%.
Related Results
Amended Final Report on the Safety Assessment of Oryza Sativa (Rice) Bran Oil, Oryza Sativa (Rice) Germ Oil, Rice Bran Acid, Oryza Sativa (Rice) Bran Wax, Hydrogenated Rice Bran Wax, Oryza Sativa (Rice) Bran Extract, Oryza Sativa (Rice) Extract, Oryza Sat
Amended Final Report on the Safety Assessment of Oryza Sativa (Rice) Bran Oil, Oryza Sativa (Rice) Germ Oil, Rice Bran Acid, Oryza Sativa (Rice) Bran Wax, Hydrogenated Rice Bran Wax, Oryza Sativa (Rice) Bran Extract, Oryza Sativa (Rice) Extract, Oryza Sat
This report addresses the safety of cosmetic ingredients derived from rice, Oryza sativa. Oils, Fatty Acids, and Waxes : Rice Bran Oil functions in cosmetics as a conditioning agen...
The influence of different groundwater levels (GWL) on C and GHG dynamics of an agricultural used wetland area
The influence of different groundwater levels (GWL) on C and GHG dynamics of an agricultural used wetland area
<p>Agricultural used wetlands with high SOC stocks cover large parts of northeast (NE) Germany. Drainage and modification of groundwater levels by agricultural water ...
GWL-REA: An improved method for classifying Hess-Brezowksy Grosswetterlagen based on pattern correlations in combination with Lamb Weather Type statistics
GWL-REA: An improved method for classifying Hess-Brezowksy Grosswetterlagen based on pattern correlations in combination with Lamb Weather Type statistics
<p>The Hess-Brezowsky Grosswetterlagen (GWL) are a widely used set of 29 synoptic weather patterns, focussed on Central Europe. Previous algorithmic methods for class...
GEOGRAPHICALLY WEIGHTED LASSO (GWL) MODELING TO IDENTIFY FACTORS INFLUENCE STUNTING INCIDENTS IN SOUTH SULAWESI
GEOGRAPHICALLY WEIGHTED LASSO (GWL) MODELING TO IDENTIFY FACTORS INFLUENCE STUNTING INCIDENTS IN SOUTH SULAWESI
The Geographically Weighted Lasso (GWL) method is a technique that employs the Lasso approach within the Geographically Weighted Regression (GWR) model, which can also simultaneous...
Extraction of Rice Bran Oil from Rice Bran by Supercritical Carbon Dioxide
Extraction of Rice Bran Oil from Rice Bran by Supercritical Carbon Dioxide
Rice bran is an important source of nutrients that have many good bioactive compounds. This study examined the extraction of bran rice oil using supercritical carbon dioxide. Fr...
Analisis Usaha Tani Padi dengan Pola Rotasi Tanaman Padi-Padi-Kacang Tanah dan Pola Rotasi Tanam Padi-Padi-Jagung (Studi Kasus di Desa Mojokrapak Kecamatan Tembelang Kabupaten Jombang)
Analisis Usaha Tani Padi dengan Pola Rotasi Tanaman Padi-Padi-Kacang Tanah dan Pola Rotasi Tanam Padi-Padi-Jagung (Studi Kasus di Desa Mojokrapak Kecamatan Tembelang Kabupaten Jombang)
The purpose of this study was to find out how much income rice farming has with the rice-rice-peanut cropping pattern and the rice-rice-corn cropping pattern in Mojokrapak Village,...
The Rice (Oryza Sativa L.) Rc Gene, Which Imparts Resistance To Pre-Harvest Sprouting, Retains Seed and Milled Rice Quality
The Rice (Oryza Sativa L.) Rc Gene, Which Imparts Resistance To Pre-Harvest Sprouting, Retains Seed and Milled Rice Quality
Abstract
Pre-harvest sprouting (PHS) in cereal crops, including rice ( Oryza sativa L.), causes substantial yield and end-use quality losses worldwide. These losses could b...
การเปรียบเทียบประสิทธิภาพของวิธีการสร้างช่วงความเชื่อมั่นสำหรับสัมประสิทธิ์การถดถอยลอจิสติกในข้อมูลที่มีมิติสูง โดยใช้การประมาณสองขั้นตอนด้วยวิธี lasso + MLE and a bootstrap lasso + partial ridge
การเปรียบเทียบประสิทธิภาพของวิธีการสร้างช่วงความเชื่อมั่นสำหรับสัมประสิทธิ์การถดถอยลอจิสติกในข้อมูลที่มีมิติสูง โดยใช้การประมาณสองขั้นตอนด้วยวิธี lasso + MLE and a bootstrap lasso + partial ridge
งานวิจัยนี้มีวัตถุประสงค์เพื่อเปรียบเทียบวิธีการสร้างช่วงความเชื่อมั่นสำหรับสัมประสิทธิ์การถดถอยลอจิสติกในข้อมูลที่มีมิติสูง โดยใช้การประมาณสองขั้นตอนด้วยวิธี Lasso+MLE และวิธี Las...

