Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Observation of blackbody radiation enhanced superradiance in ultracold Rydberg gases

View through CrossRef
Abstract An ensemble of excited atoms can synchronize emission of light collectively in a process known as superradiance when its characteristic size is smaller than the wavelength of emitted photons. The underlying superradiance depends strongly on electromagnetic (photon) fields surrounding the atomic ensemble. High mode densities of microwave photons from 300 K blackbody radiation (BBR) significantly enhance decay rates of Rydberg states to neighbouring states, enabling superradiance that is not possible with bare vacuum induced spontaneous decay. Here we report observations of the superradiance of ultracold Rydberg atoms embedded in a bath of room-temperature photons. The temporal evolution of the Rydberg |nD⟩ to |(n + 1)P⟩ superradiant decay of Cs atoms (n the principal quantum number) is measured directly in free space. Theoretical simulations confirm the BBR enhanced superradiance in large Rydberg ensembles. We demonstrate that the van der Waals interactions between Rydberg atoms change the superradiant dynamics and modify the scaling of the superradiance. In the presence of static electric fields, we find that the superradiance becomes slow, potentially due to many-body interaction induced dephasing. Our study provides insights into many-body dynamics of interacting atoms coupled to thermal BBR, and might open a route to the design of blackbody thermometry at microwave frequencies via collective, dissipative photon-atom interactions.
Title: Observation of blackbody radiation enhanced superradiance in ultracold Rydberg gases
Description:
Abstract An ensemble of excited atoms can synchronize emission of light collectively in a process known as superradiance when its characteristic size is smaller than the wavelength of emitted photons.
The underlying superradiance depends strongly on electromagnetic (photon) fields surrounding the atomic ensemble.
High mode densities of microwave photons from 300 K blackbody radiation (BBR) significantly enhance decay rates of Rydberg states to neighbouring states, enabling superradiance that is not possible with bare vacuum induced spontaneous decay.
Here we report observations of the superradiance of ultracold Rydberg atoms embedded in a bath of room-temperature photons.
The temporal evolution of the Rydberg |nD⟩ to |(n + 1)P⟩ superradiant decay of Cs atoms (n the principal quantum number) is measured directly in free space.
Theoretical simulations confirm the BBR enhanced superradiance in large Rydberg ensembles.
We demonstrate that the van der Waals interactions between Rydberg atoms change the superradiant dynamics and modify the scaling of the superradiance.
In the presence of static electric fields, we find that the superradiance becomes slow, potentially due to many-body interaction induced dephasing.
Our study provides insights into many-body dynamics of interacting atoms coupled to thermal BBR, and might open a route to the design of blackbody thermometry at microwave frequencies via collective, dissipative photon-atom interactions.

Related Results

Electromagnetically induced transparency of a cesium Rydberg atom in weak radio-frequency field
Electromagnetically induced transparency of a cesium Rydberg atom in weak radio-frequency field
Rydberg atoms are highly excited atoms with large principal quantum number n, big sizes (~n2) and long lifetimes (~n3). Rydberg atoms are very sensitive to an external field due to...
Excitation of Rydberg Molecules in Ultracold Quantum Gases
Excitation of Rydberg Molecules in Ultracold Quantum Gases
Recent experiments in our group on the excitation of Rydberg molecules in ultracold quantum gases have been reviewed. Quantum gases are a well‐suited environment to excite Rydberg ...
Astronomical masers and Dicke’s superradiance
Astronomical masers and Dicke’s superradiance
ABSTRACT We consider the radiation properties and processes of a gas with a population inversion using the formalism based on the Maxwell–Bloch equations. We focus o...
Spontaneous evolution of Cs 47D Rydberg atoms at different fine levels
Spontaneous evolution of Cs 47D Rydberg atoms at different fine levels
The spontaneous evolution from Rydberg atoms in different fine states to plasmas is investigated. Two-photon excitation is used to excite ultracold cesium atoms from 6S1/2 to 47D3/...
Geochemical Characteristics and Origin of Natural Gases in the Qaidam Basin, China
Geochemical Characteristics and Origin of Natural Gases in the Qaidam Basin, China
Abstract  Sixty‐five natural gas samples were collected from 19 oil‐gasfields in the Qaidam basin, China. The chemical composition and carbon isotope values of the samples were mea...
Computational ghost imaging study based on incoherent light from blackbody radiation
Computational ghost imaging study based on incoherent light from blackbody radiation
In recent years, ghost imaging has made important progress in the field of remote sensing imaging. In order to promote the application of solar ghost imaging in this field, this pa...
Electromagnetically induced transparency of Rydberg atoms in modulated laser fields
Electromagnetically induced transparency of Rydberg atoms in modulated laser fields
Rydberg atoms, with large principal quantum number n, have been widely investigated in recent years due to their peculiar properties, such as big sizes, long lifetimes and strong i...
Study of Eu 4f76snl Rydberg states
Study of Eu 4f76snl Rydberg states
The three-step two-color resonant ionization method and three-step three-color isolated-core excitation (ICE) technique are used to study the spectra of the highly excited bound st...

Back to Top