Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

A Low-Frequency MEMS Magnetoelectric Antenna Based on Mechanical Resonance

View through CrossRef
Antenna miniaturization technology has been a challenging problem in the field of antenna design. The demand for antenna miniaturization is even stronger because of the larger size of the antenna in the low-frequency band. In this paper, we consider MEMS magnetoelectric antennas based on mechanical resonance, which sense the magnetic fields of electromagnetic waves through the magnetoelectric (ME) effect at their mechanical resonance frequencies, giving a voltage output. A 70 μm diameter cantilever disk with SiO2/Cr/Au/AlN/Cr/Au/FeGaB stacked layers is prepared on a 300 μm silicon wafer using the five-masks micromachining process. The MEMS magnetoelectric antenna showed a giant ME coefficient is 2.928 kV/cm/Oe in mechanical resonance at 224.1 kHz. In addition, we demonstrate the ability of this MEMS magnetoelectric antenna to receive low-frequency signals. This MEMS magnetoelectric antenna can provide new ideas for miniaturization of low-frequency wireless communication systems. Meanwhile, it has the potential to detect weak electromagnetic field signals.
Title: A Low-Frequency MEMS Magnetoelectric Antenna Based on Mechanical Resonance
Description:
Antenna miniaturization technology has been a challenging problem in the field of antenna design.
The demand for antenna miniaturization is even stronger because of the larger size of the antenna in the low-frequency band.
In this paper, we consider MEMS magnetoelectric antennas based on mechanical resonance, which sense the magnetic fields of electromagnetic waves through the magnetoelectric (ME) effect at their mechanical resonance frequencies, giving a voltage output.
A 70 μm diameter cantilever disk with SiO2/Cr/Au/AlN/Cr/Au/FeGaB stacked layers is prepared on a 300 μm silicon wafer using the five-masks micromachining process.
The MEMS magnetoelectric antenna showed a giant ME coefficient is 2.
928 kV/cm/Oe in mechanical resonance at 224.
1 kHz.
In addition, we demonstrate the ability of this MEMS magnetoelectric antenna to receive low-frequency signals.
This MEMS magnetoelectric antenna can provide new ideas for miniaturization of low-frequency wireless communication systems.
Meanwhile, it has the potential to detect weak electromagnetic field signals.

Related Results

Magneto-Electric Antenna and Its Application in Geosteering Tool Design
Magneto-Electric Antenna and Its Application in Geosteering Tool Design
Using coil antennae as transmitter and receiver to develop a geosteering tool, one has to increase the spacing between the transmitter and receiver to detect formation boundaries f...
(Invited) A 1-mG MEMS Sensor
(Invited) A 1-mG MEMS Sensor
MEMS (microelectromechanical systems) technology has contributed substantially to the miniaturization of inertial sensors, such as accelerometers and gyroscopes [1]. Nowadays, MEMS...
Peculiarities of adaptive signal processing in circular antenna arrays
Peculiarities of adaptive signal processing in circular antenna arrays
Formulation of the problem. Today, antenna arrays are often used as directional antennas of different radio systems. The main advantages of the such antennas over the mechanically ...
Research progress of small low-frequency transmitting antenna
Research progress of small low-frequency transmitting antenna
Low-frequency electromagnetic waves have the characteristics of long propagation distance, strong resistance to electromagnetic pulse interference, and slow attenuation in seawater...
Design and Analysis of Tri-bandsTriangular Shape Fractal Antenna for Wireless Applications
Design and Analysis of Tri-bandsTriangular Shape Fractal Antenna for Wireless Applications
Abstract In this paper fractal antenna is proposed for wide band applications. Proposed Antenna is having resonance frequency of 5 GHz and it has triangular patch with 36mm...
RELIABILITY OF MEMS ACCELEROMETERS FOR INSTRUMENTAL INTENSITY MAPPING OF EARTHQUAKES
RELIABILITY OF MEMS ACCELEROMETERS FOR INSTRUMENTAL INTENSITY MAPPING OF EARTHQUAKES
This work investigates suitability of low cost Micro-Electro Mechanical System (MEMS) sensors in strong motion related studies, particularly in shaking intensity networks. Two type...
Optical antennas for single emitters
Optical antennas for single emitters
The interaction of light with matter is a central topic in both fundamental science and applied technology. At the heart of this interaction lies the absorption or emission of a ph...
Design of a broadband and high-gain shared-aperture fabry-perot resonator magneto-electric microstrip antenna
Design of a broadband and high-gain shared-aperture fabry-perot resonator magneto-electric microstrip antenna
The demands for highly directive antennas are becoming more stringent, especially in microwave regions. Traditional ways to enhance the antenna gain such as reflectors, dielectric ...

Back to Top