Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Mineralogical Features of Ore Diagenites in the Urals Massive Sulfide Deposits, Russia

View through CrossRef
In weakly metamorphosed massive sulfide deposits of the Urals (Dergamysh, Yubileynoe, Yaman-Kasy, Molodezhnoe, Valentorskoe, Aleksandrinskoe, Saf’yanovskoe), banded sulfides (ore diagenites) are recognized as the products of seafloor supergene alteration (halmyrolysis) of fine-clastic sulfide sediments and further diagenesis leading to the formation of authigenic mineralization. The ore diagenites are subdivided into pyrrhotite-, chalcopyrite-, bornite-, sphalerite-, barite- and hematite-rich types. The relative contents of sphalerite-, bornite- and barite-rich facies increases in the progression from ultramafic (=Atlantic) to bimodal mafic (=Uralian) and bimodal felsic (=Baymak and Rudny Altay) types of massive sulfide deposits. The ore diagenites have lost primary features within the ore clasts and dominantly exhibit replacement and neo-formed nodular microtextures. The evolution of the mineralogy is dependent on the original primary composition, sizes and proportions of the hydrothermal ore clasts mixed with lithic serpentinite and hyaloclastic volcanic fragments together with carbonaceous and calcareous fragments. Each type of ore diagenite is characterized by specific rare mineral assemblages: Cu–Co–Ni sulfides are common in pyrrhotite-rich diagenites; tellurides and selenides in chalcopyrite-rich diagenites; minerals of the germanite group and Cu–Ag and Cu–Sn sulfides in bornite-rich diagenites; abundant galena and sulfosalts in barite- and sphalerite-rich diagenites and diverse tellurides characterize hematite-rich diagenites. Native gold in variable amounts is typical of all types of diagenites.
Title: Mineralogical Features of Ore Diagenites in the Urals Massive Sulfide Deposits, Russia
Description:
In weakly metamorphosed massive sulfide deposits of the Urals (Dergamysh, Yubileynoe, Yaman-Kasy, Molodezhnoe, Valentorskoe, Aleksandrinskoe, Saf’yanovskoe), banded sulfides (ore diagenites) are recognized as the products of seafloor supergene alteration (halmyrolysis) of fine-clastic sulfide sediments and further diagenesis leading to the formation of authigenic mineralization.
The ore diagenites are subdivided into pyrrhotite-, chalcopyrite-, bornite-, sphalerite-, barite- and hematite-rich types.
The relative contents of sphalerite-, bornite- and barite-rich facies increases in the progression from ultramafic (=Atlantic) to bimodal mafic (=Uralian) and bimodal felsic (=Baymak and Rudny Altay) types of massive sulfide deposits.
The ore diagenites have lost primary features within the ore clasts and dominantly exhibit replacement and neo-formed nodular microtextures.
The evolution of the mineralogy is dependent on the original primary composition, sizes and proportions of the hydrothermal ore clasts mixed with lithic serpentinite and hyaloclastic volcanic fragments together with carbonaceous and calcareous fragments.
Each type of ore diagenite is characterized by specific rare mineral assemblages: Cu–Co–Ni sulfides are common in pyrrhotite-rich diagenites; tellurides and selenides in chalcopyrite-rich diagenites; minerals of the germanite group and Cu–Ag and Cu–Sn sulfides in bornite-rich diagenites; abundant galena and sulfosalts in barite- and sphalerite-rich diagenites and diverse tellurides characterize hematite-rich diagenites.
Native gold in variable amounts is typical of all types of diagenites.

Related Results

Authigenesis at the Urals Massive Sulfide Deposits: Insight from Pyrite Nodules Hosted in Ore Diagenites
Authigenesis at the Urals Massive Sulfide Deposits: Insight from Pyrite Nodules Hosted in Ore Diagenites
The pyrite nodules from ore diagenites of the Urals massive sulfide deposits associated with various background sedimentary rocks are studied using optical and electron microscopy ...
A Preliminary Review of the Metallogenic Regularity of Nickel Deposits in China
A Preliminary Review of the Metallogenic Regularity of Nickel Deposits in China
AbstractThe nickel deposits mainly distributed in 19 provinces and autonomous regions in China are 339 ore deposits/occurrences, including 4 super large‐scale deposits, 14 large‐sc...
Distribution Characteristics and Metallogenic Regularity of Graphite Deposits in Qinling Orogen, China
Distribution Characteristics and Metallogenic Regularity of Graphite Deposits in Qinling Orogen, China
AbstractQinling orogen is one of the five main repository distribution provinces of large scale graphite resources. Graphite occurrence strata are multitudinous including NeoArchae...
Copper-Nickel Sulfide Ore-Bearing Formations
Copper-Nickel Sulfide Ore-Bearing Formations
Abstract The sulfide copper-nickel deposits of the Noril’sk region (Noril’sk I, Talnakh, Octyabrskaya) were formed during the late Paleozoic to early Mesozoic episod...
Nickel Sulfide Ores Related to Ultrabasic Intrusions in Canada
Nickel Sulfide Ores Related to Ultrabasic Intrusions in Canada
Abstract Canadian nickel sulfide ores related to ultrabasic rocks are divided into two categories based on geological environment. The Orogenic category is related t...
Main Mineralization Mechanism of Magmatic Sulphide Deposits in China
Main Mineralization Mechanism of Magmatic Sulphide Deposits in China
AbstractBefore intruding, primary magmas have undergone liquation and partial crystallization at depth; as a result the magmas are partitioned into barren magma, ore–bearing magma,...

Back to Top