Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

High-performance flexible surface-enhanced Raman scattering substrate based on the particle-in-multiscale 3D structure

View through CrossRef
Abstract Recently, multiscale three-dimensional (3D) structures consisting of micrometer-scale structure and nanometer-scale structure have received some attention from scientists in the field of surface-enhanced Raman scattering (SERS). In this work, micrometer-scale grating structure and nanometer-scale zinc oxide nano spikes (ZnO NSs) structure are successfully introduced into the SERS substrate with silver nanoparticles (Ag NPs) as the surface plasmon. The optimized particle-in-multiscale 3D substrate (PDMS/grating/ZnO NSs/Ag NPs) presents high sensitivity with an ultralow limit of detection of 1 × 10−11 M and a high enhancement factor of 7.0 × 108 for Rhodamine 6G (R6G) as the probe molecule. It benefits from the electromagnetic field enhancement from the excellent optical capture capability of grating/ZnO NSs structure and abundant electromagnetic hot spots. The quantitative analysis ability of the SERS substrate can be indicated from the good linear correlation between the logarithmic Raman intensity and the molecular concentration. At the same time, this SERS substrate exhibits excellent homogeneity and reproducibility, which have low relative standard deviations (4.43%) of the Raman intensities at 613 cm−1 peaks for R6G as the probe molecule. In addition, this SERS substrate can realize in-situ detection of Raman signal due to its excellent light transmission and flexibility. The particle-in-multiscale 3D structure as SERS substrate exhibits the vast potential in practical applicability for qualitatively and quantitatively chemical and biomedical analysis.
Title: High-performance flexible surface-enhanced Raman scattering substrate based on the particle-in-multiscale 3D structure
Description:
Abstract Recently, multiscale three-dimensional (3D) structures consisting of micrometer-scale structure and nanometer-scale structure have received some attention from scientists in the field of surface-enhanced Raman scattering (SERS).
In this work, micrometer-scale grating structure and nanometer-scale zinc oxide nano spikes (ZnO NSs) structure are successfully introduced into the SERS substrate with silver nanoparticles (Ag NPs) as the surface plasmon.
The optimized particle-in-multiscale 3D substrate (PDMS/grating/ZnO NSs/Ag NPs) presents high sensitivity with an ultralow limit of detection of 1 × 10−11 M and a high enhancement factor of 7.
0 × 108 for Rhodamine 6G (R6G) as the probe molecule.
It benefits from the electromagnetic field enhancement from the excellent optical capture capability of grating/ZnO NSs structure and abundant electromagnetic hot spots.
The quantitative analysis ability of the SERS substrate can be indicated from the good linear correlation between the logarithmic Raman intensity and the molecular concentration.
At the same time, this SERS substrate exhibits excellent homogeneity and reproducibility, which have low relative standard deviations (4.
43%) of the Raman intensities at 613 cm−1 peaks for R6G as the probe molecule.
In addition, this SERS substrate can realize in-situ detection of Raman signal due to its excellent light transmission and flexibility.
The particle-in-multiscale 3D structure as SERS substrate exhibits the vast potential in practical applicability for qualitatively and quantitatively chemical and biomedical analysis.

Related Results

Experimental and numerical investigation into the effect of surface roughness on particle rebound
Experimental and numerical investigation into the effect of surface roughness on particle rebound
Erosion damage and particle deposition are crucial wear phenomena in gas turbine engines. As a result, compressor efficiency decreases, stability margin reduces, and maintenance co...
Some aspects of the approach to the formation of flexible organizational structure at Ukrainian enterprises
Some aspects of the approach to the formation of flexible organizational structure at Ukrainian enterprises
The article aims to improve the flexible organizational structure formation approach by formulating and explaining the stages of the process and related specifics in the mechanism ...
Single-image Shape and from Shading with Atmospheric Correction for Precise Topographic Reconstruction on Mars
Single-image Shape and from Shading with Atmospheric Correction for Precise Topographic Reconstruction on Mars
. Introduction Accurate and high-resolution digital elevation models (DEMs) are essential for Martian landing site selection and geological analysis [1]. However, existing photogra...
A simplified Python-based kinematic model of particle transport in rivers
A simplified Python-based kinematic model of particle transport in rivers
We present results from a particle-scale numerical model inspired by the idea that a majority of the time during transport capable floods, bedload transport in rivers is rarefied, ...
Raman probe based on hollow-core microstructured fiber
Raman probe based on hollow-core microstructured fiber
Surface-enhanced Raman scattering (SERS) technology can effectively enhance the Raman signal of sample molecules. It has a higher sensitivity to detect biomolecule and thus has man...
HyMM: Hybrid method for disease-gene prediction by integrating multiscale module structures
HyMM: Hybrid method for disease-gene prediction by integrating multiscale module structures
AbstractMotivationIdentifying disease-related genes is important for the study of human complex diseases. Module structures or community structures are ubiquitous in biological net...
Highmobility AlGaN/GaN high electronic mobility transistors on GaN homo-substrates
Highmobility AlGaN/GaN high electronic mobility transistors on GaN homo-substrates
Gallium nitride (GaN) has great potential applications in high-power and high-frequency electrical devices due to its superior physical properties.High dislocation density of GaN g...

Back to Top