Javascript must be enabled to continue!
Investigating effectiveness of distraction rate: augmented reality-based eye-tracking feature to predict student formative and summative performance
View through CrossRef
Augmented reality (AR) is gaining attraction as a valuable aid in training and educational settings. However, the cognitive overload due to the new learning environment may hamper effective learning during the AR sessions. For this reason, monitoring students learning status with an effective metric is required. Distraction rate (DR) is a feature extracted from a student’s eye-tracking coordinates data developed to measure the distracted proportion of a student in an AR learning session (Deay, 2023). In this study, we investigate DR with students’ formative and summative assessment outcomes to validate its effectiveness as a predictor for student performance.Methods: To do this, students learned a topic of biomechanics through several AR modules. The results of quizzes taken after each AR module and their class exam outcomes taken at the end of semesters provide formative and summative evaluation performances, respectively. The data were collected in two years in the same setup. To compute DR, the standard eye-tracking coordinates, called baseline, and those of an observed student are compared. In order to reduce false alarms, two sources of noise are accounted for. First, temporal noise caused by quick deviations from the baseline that only lasts for a short period of time is removed by computing the moving average of eye-tracking curves. Second, spatial noise caused by slight deviations in a student’s sight from the virtual instructor is reduced by applying a threshold to determine whether the deviation is large enough. Finally, the proportion of moving average signals exceeding the threshold is computed.Using mixed effects logistic regression models, this study shows how DR and students' performance are related while considering the year and student variations. To extract DR from eye-tracking data, two parameters should be determined, the window size and threshold. In this study, we carried out a comparison study with several parameter values with respect to the model’s prediction performance to find the best parameter tuning.Key Findings:For the formative performance, the results indicate that DR is a significant predictor for the probability of correct answers. For the summative performance, DR does not show a significant relationship with students’ exam scores, yet the negative regression coefficient of DR can be still found, indicating that the high DR value results in low performance in the exam. It can be interpreted that, due to the time interval between AR learning and exams, even if some students may have not paid much attention during the AR learning sessions, they could catch up on the material later by themselves. Overall, it is found that the exam performance is less sensitive, compared to the quiz performance, to students’ attention paid to AR learning sessions. Accordingly, the relationship between DR and summative performance is likely to be weaker than the case of formative assessment.
AHFE International
Title: Investigating effectiveness of distraction rate: augmented reality-based eye-tracking feature to predict student formative and summative performance
Description:
Augmented reality (AR) is gaining attraction as a valuable aid in training and educational settings.
However, the cognitive overload due to the new learning environment may hamper effective learning during the AR sessions.
For this reason, monitoring students learning status with an effective metric is required.
Distraction rate (DR) is a feature extracted from a student’s eye-tracking coordinates data developed to measure the distracted proportion of a student in an AR learning session (Deay, 2023).
In this study, we investigate DR with students’ formative and summative assessment outcomes to validate its effectiveness as a predictor for student performance.
Methods: To do this, students learned a topic of biomechanics through several AR modules.
The results of quizzes taken after each AR module and their class exam outcomes taken at the end of semesters provide formative and summative evaluation performances, respectively.
The data were collected in two years in the same setup.
To compute DR, the standard eye-tracking coordinates, called baseline, and those of an observed student are compared.
In order to reduce false alarms, two sources of noise are accounted for.
First, temporal noise caused by quick deviations from the baseline that only lasts for a short period of time is removed by computing the moving average of eye-tracking curves.
Second, spatial noise caused by slight deviations in a student’s sight from the virtual instructor is reduced by applying a threshold to determine whether the deviation is large enough.
Finally, the proportion of moving average signals exceeding the threshold is computed.
Using mixed effects logistic regression models, this study shows how DR and students' performance are related while considering the year and student variations.
To extract DR from eye-tracking data, two parameters should be determined, the window size and threshold.
In this study, we carried out a comparison study with several parameter values with respect to the model’s prediction performance to find the best parameter tuning.
Key Findings:For the formative performance, the results indicate that DR is a significant predictor for the probability of correct answers.
For the summative performance, DR does not show a significant relationship with students’ exam scores, yet the negative regression coefficient of DR can be still found, indicating that the high DR value results in low performance in the exam.
It can be interpreted that, due to the time interval between AR learning and exams, even if some students may have not paid much attention during the AR learning sessions, they could catch up on the material later by themselves.
Overall, it is found that the exam performance is less sensitive, compared to the quiz performance, to students’ attention paid to AR learning sessions.
Accordingly, the relationship between DR and summative performance is likely to be weaker than the case of formative assessment.
Related Results
Augmented Reality for Smoking Cessation: Development and Usability Study (Preprint)
Augmented Reality for Smoking Cessation: Development and Usability Study (Preprint)
BACKGROUND
The recent widespread availability of augmented reality via smartphone offers an opportunity to translate cue exposure therapy for smoking cessat...
Implementation of formative assessment and its effectiveness in undergraduate medical education: an experience at a Caribbean Medical School
Implementation of formative assessment and its effectiveness in undergraduate medical education: an experience at a Caribbean Medical School
This article was migrated. The article was marked as recommended. Background:Two types of assessments used in the medical education are summative and formative assessments. Summati...
Student Reactions to Just-in-Time Formative and Summative Feedback in a Tablet-Based Family Medicine MCQ Exam
Student Reactions to Just-in-Time Formative and Summative Feedback in a Tablet-Based Family Medicine MCQ Exam
(1) Background: While the benefits of digital assessments for universities and educators are well documented, students’ perspectives remain underexplored. (2) Methods: This study e...
Augmented reality in sport and healthcare sciences
Augmented reality in sport and healthcare sciences
The term "augmented reality," refers to the adding of new data to an existing environment. When contrasted to other innovations, augmented reality may provide benefits not previous...
Street ARt: Using Augmented Reality to Create Digital Street Art
Street ARt: Using Augmented Reality to Create Digital Street Art
<p>The long-imagined fiction of a digitally supplemented world is fast becoming a reality. Augmented Reality technology is advancing at a rapid rate, approaching mass adoptio...
Why assessment in physical education is still problematic: A critical interpretive synthesis of physical education assessment literature
Why assessment in physical education is still problematic: A critical interpretive synthesis of physical education assessment literature
Assessment has received considerable attention from researchers in the field of physical education (PE). Many scholars have examined either formative assessment or summative assess...
Virtual Campus Tour Guide Berbasis Augmented Reality
Virtual Campus Tour Guide Berbasis Augmented Reality
The Indonesian University of Education (UPI) campus introduction media still uses a web application. The media is static and abstract because it cannot show how things really are. ...
Comparing cybersickness in virtual reality and mixed reality head-mounted displays
Comparing cybersickness in virtual reality and mixed reality head-mounted displays
Introduction: Defence Research and Development Canada is developing guidance on the use of Mixed Reality head-mounted displays for naval operations in the Royal Canadian Navy. Virt...

