Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

The Arctic soils dielectric characteristics

View through CrossRef
The state of the underlying surface has a noticeable effect on the process of emission and propagation of radio waves. The state of the underlying surface is dependent on the value of the complex dielectric permittivity. Usually, the underlying surface is understood as soil or ground medium. The Dobson model is recommended by the International Telecommunication Union (ITU) for calculating the dielectric permittivity of moist soils over a wide frequency range. However, this model was developed based on experimental data obtained at frequencies above 1 GHz for soils of the temperate climatic zone. This paper presents the results of measuring the complex dielectric permittivity of the Arctic region soils sample at the frequency range from 1 MHz to 8 GHz. Also, we compared the dielectric permittivity data measured in laboratory conditions and calculated by the Dobson model. It was found that the Arctic soil dielectric permittivity data measured under laboratory conditions and calculated using the Dobson model differ markedly from each other, which indicates the impossibility of using the Dobson model for calculating soil dielectric permittivity of the Arctic region. The data obtained in the laboratories case may be used to estimate the directional characteristics of near-surface emissivity systems, as well as of the ground wave propagation prediction in the Arctic region.
Title: The Arctic soils dielectric characteristics
Description:
The state of the underlying surface has a noticeable effect on the process of emission and propagation of radio waves.
The state of the underlying surface is dependent on the value of the complex dielectric permittivity.
Usually, the underlying surface is understood as soil or ground medium.
The Dobson model is recommended by the International Telecommunication Union (ITU) for calculating the dielectric permittivity of moist soils over a wide frequency range.
However, this model was developed based on experimental data obtained at frequencies above 1 GHz for soils of the temperate climatic zone.
This paper presents the results of measuring the complex dielectric permittivity of the Arctic region soils sample at the frequency range from 1 MHz to 8 GHz.
Also, we compared the dielectric permittivity data measured in laboratory conditions and calculated by the Dobson model.
It was found that the Arctic soil dielectric permittivity data measured under laboratory conditions and calculated using the Dobson model differ markedly from each other, which indicates the impossibility of using the Dobson model for calculating soil dielectric permittivity of the Arctic region.
The data obtained in the laboratories case may be used to estimate the directional characteristics of near-surface emissivity systems, as well as of the ground wave propagation prediction in the Arctic region.

Related Results

Russian Arctic Petroleum Resources: Challenges and Future Opportunities
Russian Arctic Petroleum Resources: Challenges and Future Opportunities
Abstract The Arctic continental shelf is believed to be the area with the highest unexplored potential for oil and gas as well as to unconventional hydrocarbon re...
Arctic Drilling Hazard Identification Relating to Salt Tectonics
Arctic Drilling Hazard Identification Relating to Salt Tectonics
Abstract The focus of this study is to improve our technical understanding of anticipated drilling hazards in the Arctic Circle, especially hazards relating to drill...
Problematic Soils and Their Management
Problematic Soils and Their Management
The soils which possess characteristics that make them uneconomical for the cultivation of crops without adopting proper reclamation measures are known as problem soils. For the ma...
The Visegrad Group’s Approach to the Arctic: Which (Sub-Regional) Policies?
The Visegrad Group’s Approach to the Arctic: Which (Sub-Regional) Policies?
The Visegrád countries (or V4) are increasingly showing interest in the Arctic region. With different levels of engagement, the four countries carry on diplomatic, economic, and sc...
Litter and Microplastics: Environmental monitoring in the Arctic
Litter and Microplastics: Environmental monitoring in the Arctic
<p>While the Arctic Ecosystem is already stressed by the effects of the climate crisis, another threat is emerging: plastics. Plastic pollution has become an environm...
Improving Efficiency of Reclamation of Sodium-Affected Soils
Improving Efficiency of Reclamation of Sodium-Affected Soils
Sodium affected soils, along with salt-affected soils, are distributed widely in irrigated areas of the arid and semi-arid region of the world. Some of these soils can and must be ...
Differences in Arctic sea ice simulations from various SODA3 data sets
Differences in Arctic sea ice simulations from various SODA3 data sets
<p>SODA (Simple Ocean Data Assimilation) is one of the ocean reanalysis data widely used in oceanographic research. The SODA3 dataset provides multiple ocean reanalys...
Measures to Combat Offshore Artie Oil Spills
Measures to Combat Offshore Artie Oil Spills
Abstract This paper is based on a portion of a continuous current-awareness literature survey on the varied facets of the overall problems of pollution by oil spi...

Back to Top