Javascript must be enabled to continue!
Influence of structure and properties of surface layer on fatigue durability of hardened steels strengthened by combined electromechanical treatment
View through CrossRef
Using the example of hardened carbon steels (steel 45, U8), the effect of combination of various surface hardening technologies is considered (using electromechanical processing, surface plastic deformation, non-abrasive ultrasonic finishing and their combination) on changes in structural state and surface microhardness, cyclic durability of hardened specimens and fatigue failure mechanisms. The studies were carried out by the methods of optical and scanning electron microscopy and by microhardness and fatigue tests. It is shown that for the investigated steels in quenched state, a high-speed pulsed thermo-deformation effect during electromechanical processing is accompanied by an increase in the surface microhardness (by more than 50 %) and decrease in the fatigue limit (by 20 – 30 %). Such a change in properties is associated with formation in the surface layer of substantially non-equilibrium, inhomogeneous in chemical composition, ultradispersed phases with increased hardness. At the same time, in the near-surface metal volumes tempering processes of the hardened structure proceed with the formation of softening zones and tensile residual stresses, accompanied by a decrease in the microhardness in these zones and the fatigue limit of the specimens. Such effects reduce some of the materials performance characteristics during surface hardening. The ways to improve the properties of such products due to additional technological operations require further studies. Combined surface hardening (based on electromechanical processing, surface plastic deformation and non-abrasive ultrasonic finishing) of carbon steels allows, due to variations in the intensity of temperature and deformation effects, to purposefully change the structural-phase composition and stress-strain state of the surface and near-surface metal layers. As a result, it becomes possible to form a balanced complex of strength and fatigue characteristics of the samples, depending on the preliminary heat treatment of steel. The operations of surface plastic deformation and non-abrasive ultrasonic finishing after electromechanical hardening, due to intensive plastic deformation provide smoothing of the surface and healing of near-surface defects and allow correction of stress-strain state of the processed metal. It provides an increase in microhardness in the tempering zone by 20 – 25 % and the fatigue limit of the samples by 25 – 30 %.
National University of Science and Technology MISiS
Title: Influence of structure and properties of surface layer on fatigue durability of hardened steels strengthened by combined electromechanical treatment
Description:
Using the example of hardened carbon steels (steel 45, U8), the effect of combination of various surface hardening technologies is considered (using electromechanical processing, surface plastic deformation, non-abrasive ultrasonic finishing and their combination) on changes in structural state and surface microhardness, cyclic durability of hardened specimens and fatigue failure mechanisms.
The studies were carried out by the methods of optical and scanning electron microscopy and by microhardness and fatigue tests.
It is shown that for the investigated steels in quenched state, a high-speed pulsed thermo-deformation effect during electromechanical processing is accompanied by an increase in the surface microhardness (by more than 50 %) and decrease in the fatigue limit (by 20 – 30 %).
Such a change in properties is associated with formation in the surface layer of substantially non-equilibrium, inhomogeneous in chemical composition, ultradispersed phases with increased hardness.
At the same time, in the near-surface metal volumes tempering processes of the hardened structure proceed with the formation of softening zones and tensile residual stresses, accompanied by a decrease in the microhardness in these zones and the fatigue limit of the specimens.
Such effects reduce some of the materials performance characteristics during surface hardening.
The ways to improve the properties of such products due to additional technological operations require further studies.
Combined surface hardening (based on electromechanical processing, surface plastic deformation and non-abrasive ultrasonic finishing) of carbon steels allows, due to variations in the intensity of temperature and deformation effects, to purposefully change the structural-phase composition and stress-strain state of the surface and near-surface metal layers.
As a result, it becomes possible to form a balanced complex of strength and fatigue characteristics of the samples, depending on the preliminary heat treatment of steel.
The operations of surface plastic deformation and non-abrasive ultrasonic finishing after electromechanical hardening, due to intensive plastic deformation provide smoothing of the surface and healing of near-surface defects and allow correction of stress-strain state of the processed metal.
It provides an increase in microhardness in the tempering zone by 20 – 25 % and the fatigue limit of the samples by 25 – 30 %.
.
Related Results
Comparison of Contact Fatigue Strength of Carbon Case Hardening and Laser Hardening of Gears
Comparison of Contact Fatigue Strength of Carbon Case Hardening and Laser Hardening of Gears
Carbon case hardening of gears is a widely used surface treatment in the manufacturing industry. However, an evident shortcoming is that gear distortion after carbon case hardening...
Assessment of Objective and Subjective Fatigubility in Obese
Assessment of Objective and Subjective Fatigubility in Obese
Aim: This study aimed to quantify objective fatigue using the Long Distance Corridor Walk (2-Minute Walk Test and 400-Meter Walk Test) and evaluate subjective fatigue using the Fat...
The Effect of Student Fatigue on Teaching Quality: A Prospective Cohort Study Based on One University
The Effect of Student Fatigue on Teaching Quality: A Prospective Cohort Study Based on One University
Abstract
Students' fatigue is a serious problem which affects the quality of teaching and the physical and mental health of students and must be paid attention to by the wh...
Features of the restructuring of ods steels with different nanostructures under irradiation
Features of the restructuring of ods steels with different nanostructures under irradiation
Nanoscale mechanisms of radiation hardening of oxide dispersion-strengthened (ODS) steels steels with different nanostructures, differing in the type of inclusions, their sizes and...
Experimental investigation of fatigue performance of spot welded dual phase sheet steels
Experimental investigation of fatigue performance of spot welded dual phase sheet steels
Spot weld fatigue performance of dual phase steels is of great interest to worldwide automotive manufacturers due to their expanding use in automotive industry. Given that the majo...
Process Design Method of High Speed and Stable Cutting Hardened Steel
Process Design Method of High Speed and Stable Cutting Hardened Steel
In view of the unstable cutting problem in the process of high speed milling hardened steel. Conduct
experiment of the stability of machine tool and high speed milling cutter. The ...
Corrosion Fatigue of Heavy-Duty Coated and Cathodically Protected Steel for TLP Tendons
Corrosion Fatigue of Heavy-Duty Coated and Cathodically Protected Steel for TLP Tendons
ABSTRACT
Fatigue properties of 80 ksi yield strength level steel in seawater treated with the combined protection system, which consists of a heavy-duty double-la...
Determination of permissible contact stress of case hardened raceway of roller slewing bearing
Determination of permissible contact stress of case hardened raceway of roller slewing bearing
The permissible contact stress for the rolling bearing made of the through hardened bearing steel has been established based on experience, while there is no definite value or calc...

