Javascript must be enabled to continue!
Study on particle plugging in propagating fractures based on CFD-DEM
View through CrossRef
In the drilling and completion process of fractured formations, wellbore stability is a key factor affecting the safety of drilling and completing engineering. Previous studies have demonstrated that propping moderately and plugging fractures with soluble particles can improve formation fracture pressure. When it comes to particle transport in 3D rough propagation fractures, the interactions between particle-fracture-fluid need to be considered. Meanwhile, size-exclusion, particle bridging/strain effects all influence particle transport behavior and ultimately particle plugging effectiveness. However, adequate literature review shows that fracture plugging, and fracture propagation have not been considered together. In this study, a coupled CFD-DEM method was put forward to simulate the particle plugging process of propagating fracture, and the effects of positive pressure difference, fracture roughness, particle concentration, and particle shape on the plugging mechanism were examined. It is concluded through the study that: 1) Positive pressure difference too large will lead to excessive fracture aperture, making the particles unable to form effective plugging in the middle of the fracture; positive pressure difference too small will lead to fracture aperture too small, making particles unable to enter into and plug the fracture. 2) No matter how the concentration, particle size and friction coefficient change, they mainly affect the thickness of the plugging layer, while the front end of the particle is still dominated by single-particle bridging, and double-particles bridging and multiple-particles bridging are hardly ever seen. For the wellbore strengthening approaches, such as stress cages, fracture tip sealing, etc., specific analysis should be carried out according to the occurrence of extended fractures. For example, for fractures with low roughness, the particles rarely form effective tight plugging in the middle of the fracture, so it is more suitable for fracture tip sealing; For the fracture with high roughness, if the positive pressure difference is controlled properly to ensure reasonable fracture extension, the particle plugging effect will be good, and the stress cage method is recommended for borehole strengthening.
Title: Study on particle plugging in propagating fractures based on CFD-DEM
Description:
In the drilling and completion process of fractured formations, wellbore stability is a key factor affecting the safety of drilling and completing engineering.
Previous studies have demonstrated that propping moderately and plugging fractures with soluble particles can improve formation fracture pressure.
When it comes to particle transport in 3D rough propagation fractures, the interactions between particle-fracture-fluid need to be considered.
Meanwhile, size-exclusion, particle bridging/strain effects all influence particle transport behavior and ultimately particle plugging effectiveness.
However, adequate literature review shows that fracture plugging, and fracture propagation have not been considered together.
In this study, a coupled CFD-DEM method was put forward to simulate the particle plugging process of propagating fracture, and the effects of positive pressure difference, fracture roughness, particle concentration, and particle shape on the plugging mechanism were examined.
It is concluded through the study that: 1) Positive pressure difference too large will lead to excessive fracture aperture, making the particles unable to form effective plugging in the middle of the fracture; positive pressure difference too small will lead to fracture aperture too small, making particles unable to enter into and plug the fracture.
2) No matter how the concentration, particle size and friction coefficient change, they mainly affect the thickness of the plugging layer, while the front end of the particle is still dominated by single-particle bridging, and double-particles bridging and multiple-particles bridging are hardly ever seen.
For the wellbore strengthening approaches, such as stress cages, fracture tip sealing, etc.
, specific analysis should be carried out according to the occurrence of extended fractures.
For example, for fractures with low roughness, the particles rarely form effective tight plugging in the middle of the fracture, so it is more suitable for fracture tip sealing; For the fracture with high roughness, if the positive pressure difference is controlled properly to ensure reasonable fracture extension, the particle plugging effect will be good, and the stress cage method is recommended for borehole strengthening.
Related Results
Analytical Investigation of Tire Induced Particle Emissions
Analytical Investigation of Tire Induced Particle Emissions
Research and/or Engineering Question/Objective: The fine dust contribution (<10µm) of motor vehicles represents a considerable health risk for people in urban areas. Due to an i...
Selective Plugging of Water Injection Wells
Selective Plugging of Water Injection Wells
Abstract
A field study was made to determine the feasibility of changing the injection profile of water-input wells after water breakthrough at producing oil wells. ...
Natural Fractures Sensitivity to Hydraulic Fractures in Abu Dhabi, UAE
Natural Fractures Sensitivity to Hydraulic Fractures in Abu Dhabi, UAE
Abstract
Fractures serve as important conduits for subsurface fluid flow and their presence can transform an otherwise unproductive rock formation into an economic h...
A Novel Method for Investigating the Solidification Behavior and Mechanisms of Chemical Plugging Materials Based on Molecular Simulation
A Novel Method for Investigating the Solidification Behavior and Mechanisms of Chemical Plugging Materials Based on Molecular Simulation
Summary
This study introduces a novel approach for investigating the consolidation behavior and mechanism of chemical plugging materials. The proposed method leverag...
Single-image Shape and from Shading with Atmospheric Correction for Precise Topographic Reconstruction on Mars
Single-image Shape and from Shading with Atmospheric Correction for Precise Topographic Reconstruction on Mars
. Introduction Accurate and high-resolution digital elevation models (DEMs) are essential for Martian landing site selection and geological analysis [1]. However, existing photogra...
Morphological study of dorsal Barton's fracture based on three-dimensional CT imaging
Morphological study of dorsal Barton's fracture based on three-dimensional CT imaging
Abstract
Background
Dorsal Barton's fracture is a distinct type of distal radius fracture. The treatment of dorsal Barton's fracture is contentious and may lead to severe ...
DIAPHYSEAL FRACTURES OF THE CLAVICLE
DIAPHYSEAL FRACTURES OF THE CLAVICLE
Introduction: clavicle fractures are common, especially in people under 25 years of age involved in sports, falls from heights or traffic accidents. Traditionally they were treated...
Evaluation of Computational Fluid Dynamics Modeling for Erosion in Elbow With a Large-Scale Erosion Database
Evaluation of Computational Fluid Dynamics Modeling for Erosion in Elbow With a Large-Scale Erosion Database
Abstract
Computational Fluid Dynamics has been widely used in various engineering applications. Solid particle erosion of material is a multi-physics problem that re...

