Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Long non-coding RNA tumor protein 53 target gene 1 promotes cervical cancer development via regulating microRNA-33a-5p to target forkhead box K2 (Preprint)

View through CrossRef
BACKGROUND Long non-coding RNA tumor protein 53 target gene 1 (TP53TG1) has been studied in multiple diseases, while the regulatory function of TP53TG1 on cervical cancer (CC) via regulating microRNA (miR)-33a-5p to target Forkhead box K2 (FOXK2) remains limited. This study aims to unearth the effects of TP53TG1/miR-33a-5p/FOXK2 axis on CC. OBJECTIVE This study aims to unearth the effects of TP53TG1/miR-33a-5p/FOXK2 axis on CC. METHODS The clinical samples were collected and TP53TG1, miR-33a-5p and FOXK2 levels were examined in CC tissues. The CC cells were transfected with high- or low-expressed TP53TG1, FOXK2 and miR-33a-5p to determine the change of CC cell biological activities and the status of phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway. The tumorigenesis in nude mice was conducted. The relationship among TP53TG1, miR-33a-5p and FOXK2 was validated. RESULTS TP53TG1 and FOXK2 were enriched and miR-33a-5p was inhibited in CC. The reduced TP53TG1 or FOXK2 or elevated miR-33a-5p decelerated the CC cell development and the activation of PI3K/AKT/mTOR signaling pathway. The depleted FOXK2 or enriched miR-33a-5p reversed the effects of decreased TP53TG1. TP53TG1 sponged miR-33a-5p which targeted FOXK2. The experiment in vivo validated the outcomes of the experiment in vitro. CONCLUSIONS TP53TG1 accelerates the CC development via regulating miR-33a-5p to target FOXK2 with the involvement of PI3K/AKT/mTOR signaling pathway. This study provides novel theory references and a distinct direction for the therapy strategies of CC.
Title: Long non-coding RNA tumor protein 53 target gene 1 promotes cervical cancer development via regulating microRNA-33a-5p to target forkhead box K2 (Preprint)
Description:
BACKGROUND Long non-coding RNA tumor protein 53 target gene 1 (TP53TG1) has been studied in multiple diseases, while the regulatory function of TP53TG1 on cervical cancer (CC) via regulating microRNA (miR)-33a-5p to target Forkhead box K2 (FOXK2) remains limited.
This study aims to unearth the effects of TP53TG1/miR-33a-5p/FOXK2 axis on CC.
OBJECTIVE This study aims to unearth the effects of TP53TG1/miR-33a-5p/FOXK2 axis on CC.
METHODS The clinical samples were collected and TP53TG1, miR-33a-5p and FOXK2 levels were examined in CC tissues.
The CC cells were transfected with high- or low-expressed TP53TG1, FOXK2 and miR-33a-5p to determine the change of CC cell biological activities and the status of phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway.
The tumorigenesis in nude mice was conducted.
The relationship among TP53TG1, miR-33a-5p and FOXK2 was validated.
RESULTS TP53TG1 and FOXK2 were enriched and miR-33a-5p was inhibited in CC.
The reduced TP53TG1 or FOXK2 or elevated miR-33a-5p decelerated the CC cell development and the activation of PI3K/AKT/mTOR signaling pathway.
The depleted FOXK2 or enriched miR-33a-5p reversed the effects of decreased TP53TG1.
TP53TG1 sponged miR-33a-5p which targeted FOXK2.
The experiment in vivo validated the outcomes of the experiment in vitro.
CONCLUSIONS TP53TG1 accelerates the CC development via regulating miR-33a-5p to target FOXK2 with the involvement of PI3K/AKT/mTOR signaling pathway.
This study provides novel theory references and a distinct direction for the therapy strategies of CC.

Related Results

Serum expression of microRNA-21, microRNA-125a, microRNA-125b, microRNA-214 in coronary artery disease patients
Serum expression of microRNA-21, microRNA-125a, microRNA-125b, microRNA-214 in coronary artery disease patients
Background. Coronary artery disease (CAD) is determined by interaction of environmental factors with epigenetic and genetic factors. MicroRNA-21, microRNA-125a, microRNA-125b and m...
MicroRNA-34, microRNA-130, microRNA-148, microRNA-181, microRNA-194 and microRNA-605 expression in colon cancer tissue
MicroRNA-34, microRNA-130, microRNA-148, microRNA-181, microRNA-194 and microRNA-605 expression in colon cancer tissue
Purpose of the study. Determination of the expression of microRNA‑34, microRNA‑130, microRNA‑148, microRNA‑181, microRNA‑194 and microRNA‑605 in colon tumor tissue depending on the...
Are Cervical Ribs Indicators of Childhood Cancer? A Narrative Review
Are Cervical Ribs Indicators of Childhood Cancer? A Narrative Review
Abstract A cervical rib (CR), also known as a supernumerary or extra rib, is an additional rib that forms above the first rib, resulting from the overgrowth of the transverse proce...
Cervical cancer screening utilization and predictors among eligible women in Ethiopia: A systematic review and meta-analysis
Cervical cancer screening utilization and predictors among eligible women in Ethiopia: A systematic review and meta-analysis
BackgroundDespite a remarkable progress in the reduction of global rate of maternal mortality, cervical cancer has been identified as the leading cause of maternal morbidity and mo...
Circulating and Exosomal microRNA-33 in Childhood Obesity
Circulating and Exosomal microRNA-33 in Childhood Obesity
Background: MicroRNA-33 may control a wide range of different metabolic functions. Methods: This study aims to assess the miR-33a circulating profile in normal-weight (N = 20) and ...
Cervical Cancer or Cervical Endometriosis – Review and Case Report
Cervical Cancer or Cervical Endometriosis – Review and Case Report
According to cancer death rates for women worldwide, this form of cancer ranks fourth after breast, bronchopulmonary, and colorectal cancer, affecting around 570,000 women annually...

Back to Top