Javascript must be enabled to continue!
The properties of human disease mutations at protein interfaces
View through CrossRef
AbstractThe assembly of proteins into complexes and interactions with other biomolecules are often vital for their biological function. While it is known that mutations at protein interfaces have a high potential to be damaging and cause human genetic disease, there has been relatively little consideration for how this varies between different types of interfaces. Here we investigate the properties of human pathogenic and putatively benign missense variants at homomeric (isologous and heterologous), heteromeric, DNA, RNA and other ligand interfaces, and at different regions with respect to those interfaces. We find that different types of interfaces vary greatly in their propensity to be associated with pathogenic mutations, with homomeric heterologous and DNA interfaces being particularly enriched in disease. We also find that residues that do not directly participate in an interface, but are close in 3D space, also show a significant disease enrichment. Finally, we show that mutations at different types of interfaces tend to have distinct property changes when undergoing amino acid substitutions associated with disease, and that this is linked to substantial variability in their identification by computational variant effect predictors.
Title: The properties of human disease mutations at protein interfaces
Description:
AbstractThe assembly of proteins into complexes and interactions with other biomolecules are often vital for their biological function.
While it is known that mutations at protein interfaces have a high potential to be damaging and cause human genetic disease, there has been relatively little consideration for how this varies between different types of interfaces.
Here we investigate the properties of human pathogenic and putatively benign missense variants at homomeric (isologous and heterologous), heteromeric, DNA, RNA and other ligand interfaces, and at different regions with respect to those interfaces.
We find that different types of interfaces vary greatly in their propensity to be associated with pathogenic mutations, with homomeric heterologous and DNA interfaces being particularly enriched in disease.
We also find that residues that do not directly participate in an interface, but are close in 3D space, also show a significant disease enrichment.
Finally, we show that mutations at different types of interfaces tend to have distinct property changes when undergoing amino acid substitutions associated with disease, and that this is linked to substantial variability in their identification by computational variant effect predictors.
Related Results
Endothelial Protein C Receptor
Endothelial Protein C Receptor
IntroductionThe protein C anticoagulant pathway plays a critical role in the negative regulation of the blood clotting response. The pathway is triggered by thrombin, which allows ...
Dynamics of Mutations in Patients with ET Treated with Imetelstat
Dynamics of Mutations in Patients with ET Treated with Imetelstat
Abstract
Background: Imetelstat, a first in class specific telomerase inhibitor, induced hematologic responses in all patients (pts) with essential thrombocythemia (...
Small Subclones Harboring NOTCH1, SF3B1 or BIRC3 Mutations Are Clinically Irrelevant in Chronic Lymphocytic Leukemia
Small Subclones Harboring NOTCH1, SF3B1 or BIRC3 Mutations Are Clinically Irrelevant in Chronic Lymphocytic Leukemia
Abstract
Introduction. Ultra-deep next generation sequencing (NGS) allows sensitive detection of mutations and estimation of their clonal abundance in tumor cell pop...
Distinct Profile of FLT3 Mutations in Brazil.
Distinct Profile of FLT3 Mutations in Brazil.
Abstract
Mutations in the tyrosine kinase receptor FLT3 are the most common molecular abnormality in acute myeloid leukemia (AML) being detected in about 30% of AML ...
Nfkbiz 3′ UTR Mutations Confer Selective Growth Advantage and Affect Drug Response in Diffuse Large B-Cell Lymphoma
Nfkbiz 3′ UTR Mutations Confer Selective Growth Advantage and Affect Drug Response in Diffuse Large B-Cell Lymphoma
Introduction: The activated B-cell-like (ABC) molecular subgroup of diffuse large B-cell lymphoma (DLBCL) is characterized by activation of NF-κB signaling and increased mortality....
Oligomeric protein structure networks: insights into protein-protein interactions
Oligomeric protein structure networks: insights into protein-protein interactions
Abstract
Background
Protein-protein association is essential for a variety of cellular processes and hence a large number of investigations are bein...
STAT3 Mutations in Large Granular Lymphocytic Leukemia
STAT3 Mutations in Large Granular Lymphocytic Leukemia
Abstract
Abstract 1606
Introduction:
Large granular lymphocytic leukemia (LGL leukemia) is a rare lymphoprolifera...
Response To Azacitidine Is Independent Of TP53 Mutations In Higher-Risk Myelodysplastic Syndromes (MDS) and Secondary Acute Myeloid Leukemia (sAML)
Response To Azacitidine Is Independent Of TP53 Mutations In Higher-Risk Myelodysplastic Syndromes (MDS) and Secondary Acute Myeloid Leukemia (sAML)
Abstract
Introduction
Higher-risk myelodysplastic syndromes (MDS) progress to secondary acute myeloid leukemia (sAML) within mon...

