Javascript must be enabled to continue!
Comparison of Laser-Synthetized Nanographene-Based Electrodes for Flexible Supercapacitors
View through CrossRef
In this paper, we present a comparative study of a cost-effective method for the mass fabrication of electrodes to be used in thin-film flexible supercapacitors. This technique is based on the laser-synthesis of graphene-based nanomaterials, specifically, laser-induced graphene and reduced graphene oxide. The synthesis of these materials was performed using two different lasers: a CO2 laser with an infrared wavelength of λ = 10.6 µm and a UV laser (λ = 405 nm). After the optimization of the parameters of both lasers for this purpose, the performance of these materials as bare electrodes for flexible supercapacitors was studied in a comparative way. The experiments showed that the electrodes synthetized with the low-cost UV laser compete well in terms of specific capacitance with those obtained with the CO2 laser, while the best performance is provided by the rGO electrodes fabricated with the CO2 laser. It has also been demonstrated that the degree of reduction achieved with the UV laser for the rGO patterns was not enough to provide a good interaction electrode-electrolyte. Finally, we proved that the specific capacitance achieved with the presented supercapacitors can be improved by modifying the in-planar structure, without compromising their performance, which, together with their compatibility with doping-techniques and surface treatments processes, shows the potential of this technology for the fabrication of future high-performance and inexpensive flexible supercapacitors.
Title: Comparison of Laser-Synthetized Nanographene-Based Electrodes for Flexible Supercapacitors
Description:
In this paper, we present a comparative study of a cost-effective method for the mass fabrication of electrodes to be used in thin-film flexible supercapacitors.
This technique is based on the laser-synthesis of graphene-based nanomaterials, specifically, laser-induced graphene and reduced graphene oxide.
The synthesis of these materials was performed using two different lasers: a CO2 laser with an infrared wavelength of λ = 10.
6 µm and a UV laser (λ = 405 nm).
After the optimization of the parameters of both lasers for this purpose, the performance of these materials as bare electrodes for flexible supercapacitors was studied in a comparative way.
The experiments showed that the electrodes synthetized with the low-cost UV laser compete well in terms of specific capacitance with those obtained with the CO2 laser, while the best performance is provided by the rGO electrodes fabricated with the CO2 laser.
It has also been demonstrated that the degree of reduction achieved with the UV laser for the rGO patterns was not enough to provide a good interaction electrode-electrolyte.
Finally, we proved that the specific capacitance achieved with the presented supercapacitors can be improved by modifying the in-planar structure, without compromising their performance, which, together with their compatibility with doping-techniques and surface treatments processes, shows the potential of this technology for the fabrication of future high-performance and inexpensive flexible supercapacitors.
Related Results
Structured 3D Printed Dry ECG Electrodes Using Copper Based Filament
Structured 3D Printed Dry ECG Electrodes Using Copper Based Filament
Commercial wet Silver and Silver Chloride electrodes are used to monitor electrocardiogram (ECG) signals in numerous bioimpedance applications. These electrodes are frequently sing...
Effects of binder and solvent on cathode manufacturing for Li-ion batteries
Effects of binder and solvent on cathode manufacturing for Li-ion batteries
Lithium-ion batteries (LIBs) have played a significant role in consumer electronics and electric vehicles. The major focus of research in Li-ion batteries has been to maximize perf...
Recent progress on novel current collector electrodes for energy storage devices: Supercapacitors
Recent progress on novel current collector electrodes for energy storage devices: Supercapacitors
AbstractCurrent collectors play a very crucial role in the performance of an energy storage device. Regarding supercapacitors, material design, processing, and current collectors' ...
Recent advances in flexible fiber-shaped supercapacitors
Recent advances in flexible fiber-shaped supercapacitors
With the continuous development of today's flexible electronic products, fiber-shaped supercapacitors (fiber-shaped supercapacitors, FSCs) have attracted continuous attention. That...
Double resonant sum-frequency generation in an external-cavity under high-efficiency frequency conversion
Double resonant sum-frequency generation in an external-cavity under high-efficiency frequency conversion
In recent years, more than 90% of the signal laser power can be up-converted based on the high-efficiency double resonant external cavity sum-frequency generation (SFG), especially...
Excimer Laser Micromachining of MEMS Materials
Excimer Laser Micromachining of MEMS Materials
Conventional photolithography-based microfabrication techniques are limited to two-dimensional fabrication and only particular materials can be used. Excimer laser micromachining e...
Laser show safety for smaller shows: The ILDA category a laser show standard
Laser show safety for smaller shows: The ILDA category a laser show standard
The International Laser Display Association has developed a “Category A Standard” for laser shows that ILDA considers to be generally recognized as safe under the conditions of the...
Development of a high intensity Mid-Ir OPCPA pumped by a HO:YLF amplifier
Development of a high intensity Mid-Ir OPCPA pumped by a HO:YLF amplifier
The continuous development of laser sources delivering ultra-short light pulses underpins much of the current progress in experimental science, particularly in the domain of physic...

