Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Reduced Order Modeling for Multi-Stage Bladed Disks With Friction Contacts at the Flange Joint

View through CrossRef
Most aircraft turbojet engines consist of multiple stages coupled by means of bolted flange joints which potentially represent source of nonlinearities due to friction phenomena. Methods aimed at predicting the forced response of multi-stage bladed disks have to take into account such nonlinear behavior and its effect in damping blades vibration. In this paper a novel reduced order model is proposed for studying nonlinear vibration due to contacts in multi-stage bladed disks. The methodology exploits the shape of the single-stage normal modes at the inter-stage boundary being mathematically described by spatial Fourier coefficients. Most of the Fourier coefficients represent the dominant kinematics in terms of the well-known nodal diameters (standard harmonics), while the others, which are detectable at the inter-stage boundary, correspond to new spatial small wavelength phenomena named as extra harmonics. The number of Fourier coefficients describing the displacement field at the inter-stage boundary only depends on the specific engine order excitation acting on the multi-stage system. This reduced set of coefficients allows the reconstruction of the physical relative displacement field at the interface between stages and, under the hypothesis of the Single Harmonic Balance Method, the evaluation of the contact forces by employing the classic Jenkins contact element. The methodology is here applied to a simple multi-stage bladed disk and its performance is tested using as a benchmark the Craig-Bampton reduced order models of each single-stage.
Title: Reduced Order Modeling for Multi-Stage Bladed Disks With Friction Contacts at the Flange Joint
Description:
Most aircraft turbojet engines consist of multiple stages coupled by means of bolted flange joints which potentially represent source of nonlinearities due to friction phenomena.
Methods aimed at predicting the forced response of multi-stage bladed disks have to take into account such nonlinear behavior and its effect in damping blades vibration.
In this paper a novel reduced order model is proposed for studying nonlinear vibration due to contacts in multi-stage bladed disks.
The methodology exploits the shape of the single-stage normal modes at the inter-stage boundary being mathematically described by spatial Fourier coefficients.
Most of the Fourier coefficients represent the dominant kinematics in terms of the well-known nodal diameters (standard harmonics), while the others, which are detectable at the inter-stage boundary, correspond to new spatial small wavelength phenomena named as extra harmonics.
The number of Fourier coefficients describing the displacement field at the inter-stage boundary only depends on the specific engine order excitation acting on the multi-stage system.
This reduced set of coefficients allows the reconstruction of the physical relative displacement field at the interface between stages and, under the hypothesis of the Single Harmonic Balance Method, the evaluation of the contact forces by employing the classic Jenkins contact element.
The methodology is here applied to a simple multi-stage bladed disk and its performance is tested using as a benchmark the Craig-Bampton reduced order models of each single-stage.

Related Results

A Reduced Order Model for Nonlinear Dynamics of Mistuned Bladed Disks With Shroud Friction Contacts
A Reduced Order Model for Nonlinear Dynamics of Mistuned Bladed Disks With Shroud Friction Contacts
A new reduced order modeling technique for nonlinear vibration analysis of mistuned bladed disks with shrouds is presented. It has been shown in the literature that the loss of cyc...
Parametric Reduced Order Models for Bladed Disks With Mistuning and Varying Operational Speed
Parametric Reduced Order Models for Bladed Disks With Mistuning and Varying Operational Speed
A considerable amount of research has been conducted to develop reduced order models of bladed disks that can be constructed using single sector calculations when there is mistunin...
Parametric Reduced Order Models for Bladed Disks With Mistuning and Varying Operational Speed
Parametric Reduced Order Models for Bladed Disks With Mistuning and Varying Operational Speed
A considerable amount of research has been conducted to develop reduced order models (ROMs) of bladed disks that can be constructed using single sector calculations when there is m...
Experimental Investigation of the Savonius Turbine for Low-Speed Hydrokinetic Applications in Small Rivers
Experimental Investigation of the Savonius Turbine for Low-Speed Hydrokinetic Applications in Small Rivers
The current study aims to investigate the power performance of 2-bladed and 3-bladed Savonius turbine rotors in a water channel to simulate a low river flow speed. The results were...
Tuning the Friction of Silicon Surfaces Using Nanopatterns at the Nanoscale
Tuning the Friction of Silicon Surfaces Using Nanopatterns at the Nanoscale
Friction and wear become significant at small scale lengths, particularly in MEMS/NEMS. Nanopatterns are regarded as a potential approach to solve these problems. In this paper, we...
Differential Diagnosis of Neurogenic Thoracic Outlet Syndrome: A Review
Differential Diagnosis of Neurogenic Thoracic Outlet Syndrome: A Review
Abstract Thoracic outlet syndrome (TOS) is a complex and often overlooked condition caused by the compression of neurovascular structures as they pass through the thoracic outlet. ...
EXPERIMENTAL STUDY ON SHEAR PERFORMANCE AND BEARING CAPACITY OF PRESTRESSED CONCRETE T-BEAMS
EXPERIMENTAL STUDY ON SHEAR PERFORMANCE AND BEARING CAPACITY OF PRESTRESSED CONCRETE T-BEAMS
Prestressed concrete t-beams have complex shear mechanism, and their shear performance is influenced by various factors, such as flange width and prestress. The shear performance o...

Back to Top