Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Study on coupled mode flutter parameters of large wind turbine blades

View through CrossRef
AbstractAs the size of wind turbine blades increases, the flexibility of the blades increases. In actual operation, airflow flow can cause aerodynamic elastic instability of the blade structure. Long blades may experience coupled mode flutter due to the bending torsion coupling effect, leading to blade failure. Based on Euler Bernoulli beam theory combined with Theodorsen non directional aerodynamic loads, a blade flutter characteristic equation is established through finite element method. Taking NREL 5 MW wind turbine blades as an example, analyze the influence of parameter changes in different regions of the blades on flutter characteristics. Research has found that paramter changes in the tip region of blade have the greatest impact on flutter characteristics. The vibration frequency shows an overall upward trend with the increase of waving stiffness and torsional stiffness. The flutter velocity of the three regions tends to stabilize as the bending stiffness decreases. The blade flutter speed increases with the increase of torsional stiffness. The radius of gyration is inversely proportional to the flutter frequency and flutter velocity. The impact of centroid offset on blade structure flutter frequency is minimal, but the centroid offset in the tip region has a greater impact on flutter velocity. Increasing the torsional frequency can prevent coupled mode flutter and provide a theoretical basis for blade flutter prevention design.
Springer Science and Business Media LLC
Title: Study on coupled mode flutter parameters of large wind turbine blades
Description:
AbstractAs the size of wind turbine blades increases, the flexibility of the blades increases.
In actual operation, airflow flow can cause aerodynamic elastic instability of the blade structure.
Long blades may experience coupled mode flutter due to the bending torsion coupling effect, leading to blade failure.
Based on Euler Bernoulli beam theory combined with Theodorsen non directional aerodynamic loads, a blade flutter characteristic equation is established through finite element method.
Taking NREL 5 MW wind turbine blades as an example, analyze the influence of parameter changes in different regions of the blades on flutter characteristics.
Research has found that paramter changes in the tip region of blade have the greatest impact on flutter characteristics.
The vibration frequency shows an overall upward trend with the increase of waving stiffness and torsional stiffness.
The flutter velocity of the three regions tends to stabilize as the bending stiffness decreases.
The blade flutter speed increases with the increase of torsional stiffness.
The radius of gyration is inversely proportional to the flutter frequency and flutter velocity.
The impact of centroid offset on blade structure flutter frequency is minimal, but the centroid offset in the tip region has a greater impact on flutter velocity.
Increasing the torsional frequency can prevent coupled mode flutter and provide a theoretical basis for blade flutter prevention design.

Related Results

Closed-loop identification for aircraft flutter model parameters
Closed-loop identification for aircraft flutter model parameters
Purpose The purpose of this paper is to extend the authors’ previous contributions on aircraft flutter model parameters identification. Because closed-loop condition is more widely...
Study on Coupled Mode Flutter Parameters of Large Wind Turbine Blades
Study on Coupled Mode Flutter Parameters of Large Wind Turbine Blades
Abstract As the output power of wind turbines continues to increase, the blade size and flexibility increase. In actual operation, unpredictable airflow caused by natural c...
Design and Performance Analysis of Distributed Equal Angle Spiral Vertical Axis Wind Turbine
Design and Performance Analysis of Distributed Equal Angle Spiral Vertical Axis Wind Turbine
Background: The wind turbine is divided into a horizontal axis and a vertical axis depending on the relative positions of the rotating shaft and the ground. The advantage of the ch...
Analysis of Senegal Type Vertical Axis Wind Turbines Arrangement in Wind Farm
Analysis of Senegal Type Vertical Axis Wind Turbines Arrangement in Wind Farm
Background: In a wind farm, the wind speed of the downstream wind turbine will be lower than the wind speed of the upstream wind turbine due to the influence of the wake. Therefore...
Output Power and Wake Flow Characteristics of a Wind Turbine with Swept Blades
Output Power and Wake Flow Characteristics of a Wind Turbine with Swept Blades
To study the output power and wake flow characteristics of a wind turbine with swept blades, taking the blade tip offset and the location of the sweep start as two variables, the s...
Effects of Azimilide Dihydrochloride on Circus Movement Atrial Flutter in the Canine Sterile Pericarditis Model
Effects of Azimilide Dihydrochloride on Circus Movement Atrial Flutter in the Canine Sterile Pericarditis Model
Azimilide and Atrial Flutter. Introduction: The effects of a Class III agent, azimilide di‐hydrochloride, on atrial flutter circuits were studied in a functional model of single lo...
Influence of impurities contained in fuel and air on sulfide corrosion of turbine blades of the gas turbine engine
Influence of impurities contained in fuel and air on sulfide corrosion of turbine blades of the gas turbine engine
In the process of improving gas turbine engines (GTE), increasing the resource and efficiency, there is a constant increase in temperature and pressure of the working fluid. Turbin...
wLEACH: Real-Time Meteorological Data Based Wind LEACH
wLEACH: Real-Time Meteorological Data Based Wind LEACH
Introduction:Nowadays, Wireless Sensor Network (WSN) plays an important role in various fields. The limited power capability of the sensor nodes in the WSN brings constraints on th...

Back to Top