Javascript must be enabled to continue!
The effect of vacancy on the interfacial diffusion in Cu/Sn lead-free solder joints
View through CrossRef
Purpose
The purpose of this paper is to investigate the diffusion behaviors of different atoms at the Cu/Cu3Sn interface and the vacancy formation energy, diffusion energy barrier and vacancy diffusion activation energy.
Design/methodology/approach
The diffusion behaviors of different atoms at the Cu/Cu3Sn interface are analyzed, and the vacancy formation energy, diffusion energy barrier and vacancy diffusion activation energy are obtained using molecular dynamics simulation. The nudged elastic band method is used to evaluate diffusion energy barrier for Cu/Cu3Sn system.
Findings
It is found that the vacancies in the Cu/Cu3Sn interface promote the interfacial diffusion, and the formation energy of Cu vacancy in the Cu crystal is larger than that in Cu3Sn crystal. In addition, the formation energies of Cu1 vacancy and Cu2 vacancy are close to each other in Cu3Sn crystal, and they are all less than the formation energy of Sn vacancy. Furthermore, the vacancy diffusion barrier and vacancy diffusion activation energy of the Cu/Cu3Sn interface are calculated, and the results show that the vacancy diffusion activation energy of Sn was higher than that of Cu. Finally, by comparison of diffusion activation energies of different diffusion mechanisms, Cu→Cu1vac is the most possible migration path at all temperatures.
Originality/value
It is concluded that the vacancies in Cu/Cu3Sn interface promote interfacial diffusion, and the activation energy of vacancy diffusion in most diffusion mechanisms decreases with the increase of temperature.
Title: The effect of vacancy on the interfacial diffusion in Cu/Sn lead-free solder joints
Description:
Purpose
The purpose of this paper is to investigate the diffusion behaviors of different atoms at the Cu/Cu3Sn interface and the vacancy formation energy, diffusion energy barrier and vacancy diffusion activation energy.
Design/methodology/approach
The diffusion behaviors of different atoms at the Cu/Cu3Sn interface are analyzed, and the vacancy formation energy, diffusion energy barrier and vacancy diffusion activation energy are obtained using molecular dynamics simulation.
The nudged elastic band method is used to evaluate diffusion energy barrier for Cu/Cu3Sn system.
Findings
It is found that the vacancies in the Cu/Cu3Sn interface promote the interfacial diffusion, and the formation energy of Cu vacancy in the Cu crystal is larger than that in Cu3Sn crystal.
In addition, the formation energies of Cu1 vacancy and Cu2 vacancy are close to each other in Cu3Sn crystal, and they are all less than the formation energy of Sn vacancy.
Furthermore, the vacancy diffusion barrier and vacancy diffusion activation energy of the Cu/Cu3Sn interface are calculated, and the results show that the vacancy diffusion activation energy of Sn was higher than that of Cu.
Finally, by comparison of diffusion activation energies of different diffusion mechanisms, Cu→Cu1vac is the most possible migration path at all temperatures.
Originality/value
It is concluded that the vacancies in Cu/Cu3Sn interface promote interfacial diffusion, and the activation energy of vacancy diffusion in most diffusion mechanisms decreases with the increase of temperature.
Related Results
Effect of alloy particle size and stencil aperture shape on solder printing quality
Effect of alloy particle size and stencil aperture shape on solder printing quality
Purpose
Reflow solder joint quality is significantly affected by the ability of the solder to perfectly fill pad space and retain good solder joint shape. This study aims to invest...
Effect of Solder Particle Size on the Mechanical and Thermal Reliability of Au/Sn Ag Cu/Cu Solder Joints
Effect of Solder Particle Size on the Mechanical and Thermal Reliability of Au/Sn Ag Cu/Cu Solder Joints
This paper investigates the effect of solders with different grain sizes (5–15 μm, 2–15 μm, 2–11 μm) on the mechanical and thermal reliability of flip-chip LED chip Au/Sn Ag Cu/Cu ...
Effect of stencil wall aperture on solder paste release via stencil printing
Effect of stencil wall aperture on solder paste release via stencil printing
Abstract
Solder paste printing is a process by which the correct amount of solder paste is applied to the printed circuit board via a stencil. The solder release fro...
Interfacial thermal conductance of gallium nitride/graphene/diamond heterostructure based on molecular dynamics simulation
Interfacial thermal conductance of gallium nitride/graphene/diamond heterostructure based on molecular dynamics simulation
<sec>Gallium nitride chips are widely used in high-frequency and high-power devices. However, thermal management is a serious challenge for gallium nitride devices. To improv...
Wettability of Molten Sn-Zn-Bi Solder on Cu Substrate Ervina Efzan
Wettability of Molten Sn-Zn-Bi Solder on Cu Substrate Ervina Efzan
This work presents the studies of wettability Sn-6Zn-4Bi lead-free solder alloy in electronic applications. A reference solder Sn-3.1Ag-0.9 Cu lead-free solder alloy is used to com...
Application of Finite Element Method in Optimal Design of Flip-Chip Package
Application of Finite Element Method in Optimal Design of Flip-Chip Package
More and more solder joints in circuit boards and electronic products are changing to lead free solder, placing an emphasis on lead free solder joint reliability. Solder joint fati...
Evolutionary origin of synovial joints
Evolutionary origin of synovial joints
AbstractSynovial joints, characterized by reciprocally congruent and lubricated articular surfaces separated by a cavity, are hypothesized to have evolved from continuous cartilagi...
Interfacial Adhesion in Fibre-Polymer Composites
Interfacial Adhesion in Fibre-Polymer Composites
<p>The mechanical performance of a fibre-polymer composite is largely determined by the strength of interfacial adhesion across the fibre-polymer phase boundary. Therefore, a...


