Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Insulator Activities of Nucleosome-Excluding DNA Sequences Without Bound Chromatin Looping Proteins

View through CrossRef
ABSTRACTChromosomes consist of various domains with different transcriptional activities separated by chromatin boundary sequences such as insulator sequences. Recent studies suggested that CTCF or other chromatin loop-forming protein binding sequences represented typical insulators. Alternatively, some long nucleosome-excluding DNA sequences were also reported to exhibit insulator activities in yeast and sea urchin chromosomes although specific binding of loop-forming proteins were not expected for them. However, the mechanism of the insulator activities of these sequences and the possibilities of similar insulators existing in other organisms remained unclear. In this study, we first constructed and performed simulations of a coarse-grained chromatin model containing nucleosome-rich and nucleosome-excluding DNA regions. We found that a long nucleosome-excluding region between two nucleosome-rich regions could markedly hinder the associations of two neighboring chromatin regions owing to the stronger long-term-averaged rigidity of the nucleosome-excluding region compared to that of nucleosome-rich regions. Subsequent analysis of the genome wide nucleosome positioning, protein binding, and DNA rigidity in human cells revealed that some nucleosome-excluding rigid DNA sequences without bound chromatin looping proteins could exhibit insulator activities, functioning as chromatin boundaries in various regions of human chromosomes.
Title: Insulator Activities of Nucleosome-Excluding DNA Sequences Without Bound Chromatin Looping Proteins
Description:
ABSTRACTChromosomes consist of various domains with different transcriptional activities separated by chromatin boundary sequences such as insulator sequences.
Recent studies suggested that CTCF or other chromatin loop-forming protein binding sequences represented typical insulators.
Alternatively, some long nucleosome-excluding DNA sequences were also reported to exhibit insulator activities in yeast and sea urchin chromosomes although specific binding of loop-forming proteins were not expected for them.
However, the mechanism of the insulator activities of these sequences and the possibilities of similar insulators existing in other organisms remained unclear.
In this study, we first constructed and performed simulations of a coarse-grained chromatin model containing nucleosome-rich and nucleosome-excluding DNA regions.
We found that a long nucleosome-excluding region between two nucleosome-rich regions could markedly hinder the associations of two neighboring chromatin regions owing to the stronger long-term-averaged rigidity of the nucleosome-excluding region compared to that of nucleosome-rich regions.
Subsequent analysis of the genome wide nucleosome positioning, protein binding, and DNA rigidity in human cells revealed that some nucleosome-excluding rigid DNA sequences without bound chromatin looping proteins could exhibit insulator activities, functioning as chromatin boundaries in various regions of human chromosomes.

Related Results

Mesoscale Modeling of a Nucleosome-Binding Antibody (PL2-6): Mono- vs. Bivalent Chromatin Complexes
Mesoscale Modeling of a Nucleosome-Binding Antibody (PL2-6): Mono- vs. Bivalent Chromatin Complexes
ABSTRACTVisualizing chromatin adjacent to the nuclear envelope (denoted “epichromatin”) by in vitro immunostaining with a bivalent nucleosome-binding antibody (termed monoclonal an...
Thermodynamics of nucleosome breathing and positioning
Thermodynamics of nucleosome breathing and positioning
Nucleosomes are fundamental units of chromatin in which a length of genomic DNA is wrapped around a histone octamer spool in a left-handed superhelix. Large-scale nucleosome maps s...
Genome wide hypomethylation and youth-associated DNA gap reduction promoting DNA damage and senescence-associated pathogenesis
Genome wide hypomethylation and youth-associated DNA gap reduction promoting DNA damage and senescence-associated pathogenesis
Abstract Background: Age-associated epigenetic alteration is the underlying cause of DNA damage in aging cells. Two types of youth-associated DNA-protection epigenetic mark...
One Chaperone to Rule Them All: Deciphering How Chromatin is Assembled During DNA Replication
One Chaperone to Rule Them All: Deciphering How Chromatin is Assembled During DNA Replication
Genomic DNA, which governs cellular life, resides within the nucleus of every human cell. Inside each nucleus lies approximately two meters of DNA, posing a significant challenge, ...
Simultaneous Mapping of DNA Binding and Nucleosome Positioning with SpLiT-ChEC
Simultaneous Mapping of DNA Binding and Nucleosome Positioning with SpLiT-ChEC
AbstractThe organization of chromatin – including the positions of nucleosomes and the binding of other proteins to DNA – helps define transcriptional profiles in eukaryotic organi...
Multiple epigenetic factors co-localize with HMGN proteins in A-compartment chromatin
Multiple epigenetic factors co-localize with HMGN proteins in A-compartment chromatin
Abstract Background Nucleosomal binding proteins, HMGN, is a family of chromatin architectural proteins that are expressed in all vertebrate nuclei....
Echinococcus granulosus in Environmental Samples: A Cross-Sectional Molecular Study
Echinococcus granulosus in Environmental Samples: A Cross-Sectional Molecular Study
Abstract Introduction Echinococcosis, caused by tapeworms of the Echinococcus genus, remains a significant zoonotic disease globally. The disease is particularly prevalent in areas...
CENP-A and CENP-B collaborate to create an open centromeric chromatin state
CENP-A and CENP-B collaborate to create an open centromeric chromatin state
AbstractCentromeres, the sites within chromosomes responsible for accurate genome repartitioning, are epigenetically defined via replacement of canonical histone H3 by the histone ...

Back to Top