Javascript must be enabled to continue!
Analysis of Bone “Collagen” Extraction Products for Radiocarbon Dating
View through CrossRef
Archaeological bones are now routinely dated in many radiocarbon laboratories through the extraction of “collagen.” Methods for “collagen” extraction vary, and several laboratories now apply an ultrafiltration step after gelatinization to extract the higher molecular weight (usually >10 or 30kDa) fraction for dating, thereby removing low molecular weight contaminants. Ultrafiltration has been demonstrated to result in products that are easier to handle and have more acceptable C:N ratios, and in some instances can result in significantly improved (generally older) 14C dates when compared to non-ultrafiltered products from the same bone. Although it has been suggested that ultrafiltration removes potential contaminants such as short-chain degraded collagen and other peptides and amino acids, fulvic acids, and salts, there remains little published evidence to support this. This paper presents data from a pilot study investigating the most suitable techniques with which to study the products of the routine “collagen” extraction procedures employed at the Oxford Radiocarbon Accelerator Unit (ORAU) (modified Longin followed by ultrafiltration). The preliminary data demonstrates that the final product of “collagen” extraction at ORAU appears to be an aggregate consisting of a range of proteins of different molecular weights, including collagen, as well as some other organic matter and inorganic species. Ultrafiltration is removing some, but not all, of the <30kDa fraction from the samples. Further work to investigate the nature of this aggregate and how best to improve the efficiency of “collagen” extraction procedures is discussed.
Cambridge University Press (CUP)
Title: Analysis of Bone “Collagen” Extraction Products for Radiocarbon Dating
Description:
Archaeological bones are now routinely dated in many radiocarbon laboratories through the extraction of “collagen.
” Methods for “collagen” extraction vary, and several laboratories now apply an ultrafiltration step after gelatinization to extract the higher molecular weight (usually >10 or 30kDa) fraction for dating, thereby removing low molecular weight contaminants.
Ultrafiltration has been demonstrated to result in products that are easier to handle and have more acceptable C:N ratios, and in some instances can result in significantly improved (generally older) 14C dates when compared to non-ultrafiltered products from the same bone.
Although it has been suggested that ultrafiltration removes potential contaminants such as short-chain degraded collagen and other peptides and amino acids, fulvic acids, and salts, there remains little published evidence to support this.
This paper presents data from a pilot study investigating the most suitable techniques with which to study the products of the routine “collagen” extraction procedures employed at the Oxford Radiocarbon Accelerator Unit (ORAU) (modified Longin followed by ultrafiltration).
The preliminary data demonstrates that the final product of “collagen” extraction at ORAU appears to be an aggregate consisting of a range of proteins of different molecular weights, including collagen, as well as some other organic matter and inorganic species.
Ultrafiltration is removing some, but not all, of the <30kDa fraction from the samples.
Further work to investigate the nature of this aggregate and how best to improve the efficiency of “collagen” extraction procedures is discussed.
Related Results
Poster 107: The Use of Coacervate Sustained Release System to Identify the Most Potent BMP for Bone Regeneration
Poster 107: The Use of Coacervate Sustained Release System to Identify the Most Potent BMP for Bone Regeneration
Objectives: Bone morphogenetic proteins (BMPs) belong to the transforming growth factor superfamily that were first discovered by Marshall Urist. There are 14 BMPs identified to da...
Deciphering the Role of TGF-β1 in Altering Collagen I and Collagen III in the New Zealand Rabbit’s (Oryctolagus cuniculus) Urethral Wall in Urethral Stricture Development
Deciphering the Role of TGF-β1 in Altering Collagen I and Collagen III in the New Zealand Rabbit’s (Oryctolagus cuniculus) Urethral Wall in Urethral Stricture Development
Background: Presently, there's a lack of standardization in animal models used for studying urethral stricture. Transforming Growth Factor Beta 1 (TGF-β1) is known to regulate the ...
Review Article: Fish Bone Collagen
Review Article: Fish Bone Collagen
Fishbone collagen is an alternative source of bovine and pig collagen. The purpose of this article is to review the types, benefits, extraction methods and characterization of coll...
The irradiated human mandible
The irradiated human mandible
Mandibular bone is known to be susceptible to irradiation damage, especially when radiation dose exceeds 50 Gy. This can result in compromised wound healing and ultimately osteorad...
The Versatility of Collagen in Pharmacology: Targeting Collagen, Targeting with Collagen
The Versatility of Collagen in Pharmacology: Targeting Collagen, Targeting with Collagen
Collagen, a versatile family of proteins with 28 members and 44 genes, is pivotal in maintaining tissue integrity and function. It plays a crucial role in physiological processes l...
Effect of Collagen Cross-Link Deficiency on Incorporation of Grafted Bone
Effect of Collagen Cross-Link Deficiency on Incorporation of Grafted Bone
Bone matrix collagen, is one of the major contributors to bone quality. No studies have examined how bone quality affects the results of bone transplantation. Collagen cross-links ...
(084) Analysis of BMP4 and GREMLIN as targets of SHH signaling and regulators of the collagen axis in the penis.
(084) Analysis of BMP4 and GREMLIN as targets of SHH signaling and regulators of the collagen axis in the penis.
Abstract
Introduction
Increased collagen deposition occurs in erectile dysfunction (ED) patients and animal models, and the unde...
Abstract 173: Adipocytes-derived collagen reorganization in microenvironment promotes breast cancer progression
Abstract 173: Adipocytes-derived collagen reorganization in microenvironment promotes breast cancer progression
Abstract
Purposes
Breast cancer cells recruit surrounding stromal cells, such as cancer-associated fibroblasts (CAFs), to reorganize collagen and prom...

