Javascript must be enabled to continue!
Nanoparticle-Based RNAi Therapeutics Targeting Cancer Stem Cells: Update and Prospective
View through CrossRef
Cancer stem cells (CSCs) are characterized by intrinsic self-renewal and tumorigenic properties, and play important roles in tumor initiation, progression, and resistance to diverse forms of anticancer therapy. Accordingly, targeting signaling pathways that are critical for CSC maintenance and biofunctions, including the Wnt, Notch, Hippo, and Hedgehog signaling cascades, remains a promising therapeutic strategy in multiple cancer types. Furthermore, advances in various cancer omics approaches have largely increased our knowledge of the molecular basis of CSCs, and provided numerous novel targets for anticancer therapy. However, the majority of recently identified targets remain ‘undruggable’ through small-molecule agents, whereas the implications of exogenous RNA interference (RNAi, including siRNA and miRNA) may make it possible to translate our knowledge into therapeutics in a timely manner. With the recent advances of nanomedicine, in vivo delivery of RNAi using elaborate nanoparticles can potently overcome the intrinsic limitations of RNAi alone, as it is rapidly degraded and has unpredictable off-target side effects. Herein, we present an update on the development of RNAi-delivering nanoplatforms in CSC-targeted anticancer therapy and discuss their potential implications in clinical trials.
Title: Nanoparticle-Based RNAi Therapeutics Targeting Cancer Stem Cells: Update and Prospective
Description:
Cancer stem cells (CSCs) are characterized by intrinsic self-renewal and tumorigenic properties, and play important roles in tumor initiation, progression, and resistance to diverse forms of anticancer therapy.
Accordingly, targeting signaling pathways that are critical for CSC maintenance and biofunctions, including the Wnt, Notch, Hippo, and Hedgehog signaling cascades, remains a promising therapeutic strategy in multiple cancer types.
Furthermore, advances in various cancer omics approaches have largely increased our knowledge of the molecular basis of CSCs, and provided numerous novel targets for anticancer therapy.
However, the majority of recently identified targets remain ‘undruggable’ through small-molecule agents, whereas the implications of exogenous RNA interference (RNAi, including siRNA and miRNA) may make it possible to translate our knowledge into therapeutics in a timely manner.
With the recent advances of nanomedicine, in vivo delivery of RNAi using elaborate nanoparticles can potently overcome the intrinsic limitations of RNAi alone, as it is rapidly degraded and has unpredictable off-target side effects.
Herein, we present an update on the development of RNAi-delivering nanoplatforms in CSC-targeted anticancer therapy and discuss their potential implications in clinical trials.
Related Results
Stem cells
Stem cells
What is a stem cell? The term is a combination of ‘cell’ and ‘stem’. A cell is a major category of living thing, while a stem is a site of growth and support for something else. In...
e0157 RNA interference targeting ACE and AT1R gene reduced blood pressure and improved myocardial remodelling in SHR
e0157 RNA interference targeting ACE and AT1R gene reduced blood pressure and improved myocardial remodelling in SHR
Introduction
Angiotensin-converting enzyme (ACE) and angiotensin II (Ang II) Type 1 receptor (ATlR) have been shown to play an important role in the pathogenesis ...
Are Cervical Ribs Indicators of Childhood Cancer? A Narrative Review
Are Cervical Ribs Indicators of Childhood Cancer? A Narrative Review
Abstract
A cervical rib (CR), also known as a supernumerary or extra rib, is an additional rib that forms above the first rib, resulting from the overgrowth of the transverse proce...
RNAi: VIRAL THERAPEUTICS
RNAi: VIRAL THERAPEUTICS
RNA interference or RNAi is a natural biological response in eukaryotic cells as their antiviral defense mechanisms. RNAi protects a range of
organisms by gene silencing or down re...
Abstract 2084: Tumor suppressor microRNA miR-34 inhibits human pancreatic cancer stem cells
Abstract 2084: Tumor suppressor microRNA miR-34 inhibits human pancreatic cancer stem cells
Abstract
MicroRNAs (miRNAs) have been implicated in cancer initiation and progression via their ability to affect expression of genes and proteins that regulate cell...
The Metabolic Enzyme Hexokinase 2 Localizes to the Nucleus in AML and Normal Hematopoietic Stem/Progenitor Cells to Maintain Stemness
The Metabolic Enzyme Hexokinase 2 Localizes to the Nucleus in AML and Normal Hematopoietic Stem/Progenitor Cells to Maintain Stemness
Abstract
Hematopoietic cells are arranged in a hierarchy where stem and progenitor cells differentiate into mature blood cells. Likewise, AML (Acute Myeloid Leukemia...
Akt-activated Vascular Endothelial Cells Enhance Breast Cancer Stemness
Akt-activated Vascular Endothelial Cells Enhance Breast Cancer Stemness
AbstractBreast cancer is a major disease leading in both incidence and mortality in women. Although the mortality has been reduced by various therapy approaches, recurrence still o...
Optimal structure of heterogeneous stem cell niche: The importance of cell migration in delaying tumorigenesis
Optimal structure of heterogeneous stem cell niche: The importance of cell migration in delaying tumorigenesis
AbstractStudying the stem cell niche architecture is a crucial step for investigating the process of oncogenesis and obtaining an effective stem cell therapy for various cancers. R...

