Javascript must be enabled to continue!
Spinal and Supraspinal Factors in Human Muscle Fatigue
View through CrossRef
Muscle fatigue is an exercise-induced reduction in maximal voluntary muscle force. It may arise not only because of peripheral changes at the level of the muscle, but also because the central nervous system fails to drive the motoneurons adequately. Evidence for “central” fatigue and the neural mechanisms underlying it are reviewed, together with its terminology and the methods used to reveal it. Much data suggest that voluntary activation of human motoneurons and muscle fibers is suboptimal and thus maximal voluntary force is commonly less than true maximal force. Hence, maximal voluntary strength can often be below true maximal muscle force. The technique of twitch interpolation has helped to reveal the changes in drive to motoneurons during fatigue. Voluntary activation usually diminishes during maximal voluntary isometric tasks, that is central fatigue develops, and motor unit firing rates decline. Transcranial magnetic stimulation over the motor cortex during fatiguing exercise has revealed focal changes in cortical excitability and inhibitability based on electromyographic (EMG) recordings, and a decline in supraspinal “drive” based on force recordings. Some of the changes in motor cortical behavior can be dissociated from the development of this “supraspinal” fatigue. Central changes also occur at a spinal level due to the altered input from muscle spindle, tendon organ, and group III and IV muscle afferents innervating the fatiguing muscle. Some intrinsic adaptive properties of the motoneurons help to minimize fatigue. A number of other central changes occur during fatigue and affect, for example, proprioception, tremor, and postural control. Human muscle fatigue does not simply reside in the muscle.
Title: Spinal and Supraspinal Factors in Human Muscle Fatigue
Description:
Muscle fatigue is an exercise-induced reduction in maximal voluntary muscle force.
It may arise not only because of peripheral changes at the level of the muscle, but also because the central nervous system fails to drive the motoneurons adequately.
Evidence for “central” fatigue and the neural mechanisms underlying it are reviewed, together with its terminology and the methods used to reveal it.
Much data suggest that voluntary activation of human motoneurons and muscle fibers is suboptimal and thus maximal voluntary force is commonly less than true maximal force.
Hence, maximal voluntary strength can often be below true maximal muscle force.
The technique of twitch interpolation has helped to reveal the changes in drive to motoneurons during fatigue.
Voluntary activation usually diminishes during maximal voluntary isometric tasks, that is central fatigue develops, and motor unit firing rates decline.
Transcranial magnetic stimulation over the motor cortex during fatiguing exercise has revealed focal changes in cortical excitability and inhibitability based on electromyographic (EMG) recordings, and a decline in supraspinal “drive” based on force recordings.
Some of the changes in motor cortical behavior can be dissociated from the development of this “supraspinal” fatigue.
Central changes also occur at a spinal level due to the altered input from muscle spindle, tendon organ, and group III and IV muscle afferents innervating the fatiguing muscle.
Some intrinsic adaptive properties of the motoneurons help to minimize fatigue.
A number of other central changes occur during fatigue and affect, for example, proprioception, tremor, and postural control.
Human muscle fatigue does not simply reside in the muscle.
Related Results
Poster 247: Muscle ERRγ Overexpression Mitigates the Muscle Atrophy after ACL injury
Poster 247: Muscle ERRγ Overexpression Mitigates the Muscle Atrophy after ACL injury
Objectives: Anterior cruciate ligament (ACL) reconstruction is the 6th most common orthopedic procedure performed in the United States (1,2). There is substantial evidence to sugge...
Differential Diagnosis of Neurogenic Thoracic Outlet Syndrome: A Review
Differential Diagnosis of Neurogenic Thoracic Outlet Syndrome: A Review
Abstract
Thoracic outlet syndrome (TOS) is a complex and often overlooked condition caused by the compression of neurovascular structures as they pass through the thoracic outlet. ...
Assessment of Objective and Subjective Fatigubility in Obese
Assessment of Objective and Subjective Fatigubility in Obese
Aim: This study aimed to quantify objective fatigue using the Long Distance Corridor Walk (2-Minute Walk Test and 400-Meter Walk Test) and evaluate subjective fatigue using the Fat...
5. All That glitters is not gold
5. All That glitters is not gold
Abstract
Introduction
Inflammatory muscle disease is a rare but well-recognised manifestation of systemic vasculitis. It can pre...
The Effect of Student Fatigue on Teaching Quality: A Prospective Cohort Study Based on One University
The Effect of Student Fatigue on Teaching Quality: A Prospective Cohort Study Based on One University
Abstract
Students' fatigue is a serious problem which affects the quality of teaching and the physical and mental health of students and must be paid attention to by the wh...
Molecular Mechanisms of Muscle Fatigue
Molecular Mechanisms of Muscle Fatigue
Muscle fatigue (MF) declines the capacity of muscles to complete a task over time at a constant load. MF is usually short-lasting, reversible, and is experienced as a feeling of ti...
SPINAL MUSCULAR ATROPHY CLINICAL FEATURES, CLASSIFICATION, NATURAL HISTORY, GENETICS, DIAGNOSIS, COMPLICATIONS AND TREATMENT OF THE DISEASE
SPINAL MUSCULAR ATROPHY CLINICAL FEATURES, CLASSIFICATION, NATURAL HISTORY, GENETICS, DIAGNOSIS, COMPLICATIONS AND TREATMENT OF THE DISEASE
Introduction: Spinal muscular atrophy (SMA) is a complex neuromuscular disorder, it is the most usual autosomal recessively inherited lethal neuromuscular disease in pediatrics, it...
Testing a Model for Cognitive Fatigue in Individuals with Multiple Sclerosis
Testing a Model for Cognitive Fatigue in Individuals with Multiple Sclerosis
Up to 95% of individuals with multiple sclerosis (MS) experience fatigue. The cognitive component of fatigue is generally reported as the most distressing aspect of patients' fatig...

