Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Radical SAM enzymes: Nature's choice for radical reactions

View through CrossRef
Enzymes that use a [4Fe‐4S]1+ cluster plus S‐adenosyl‐l‐methionine (SAM) to initiate radical reactions (radical SAM) form the largest enzyme superfamily, with over half a million members across the tree of life. This review summarizes recent work revealing the radical SAM reaction pathway, which ultimately liberates the 5′‐deoxyadenosyl (5′‐dAdo•) radical to perform extremely diverse, highly regio‐ and stereo‐specific, transformations. Most surprising was the discovery of an organometallic intermediate Ω exhibiting an Fe‐C5′‐adenosyl bond. Ω liberates 5′‐dAdo• through homolysis of the Fe–C5′ bond, in analogy to Co–C5′ bond homolysis in B12, previously viewed as biology's paradigmatic radical generator. The 5′‐dAdo• has been trapped and characterized in radical SAM enzymes via a recently discovered photoreactivity of the [4Fe‐4S]+/SAM complex, and has been confirmed as a catalytically active intermediate in enzyme catalysis. The regioselective SAM S–C bond cleavage to produce 5′‐dAdo• originates in the Jahn–Teller effect. The simplicity of SAM as a radical precursor, and the exquisite control of 5′‐dAdo• reactivity in radical SAM enzymes, may be why radical SAM enzymes pervade the tree of life, while B12 enzymes are only a few.
Title: Radical SAM enzymes: Nature's choice for radical reactions
Description:
Enzymes that use a [4Fe‐4S]1+ cluster plus S‐adenosyl‐l‐methionine (SAM) to initiate radical reactions (radical SAM) form the largest enzyme superfamily, with over half a million members across the tree of life.
This review summarizes recent work revealing the radical SAM reaction pathway, which ultimately liberates the 5′‐deoxyadenosyl (5′‐dAdo•) radical to perform extremely diverse, highly regio‐ and stereo‐specific, transformations.
Most surprising was the discovery of an organometallic intermediate Ω exhibiting an Fe‐C5′‐adenosyl bond.
Ω liberates 5′‐dAdo• through homolysis of the Fe–C5′ bond, in analogy to Co–C5′ bond homolysis in B12, previously viewed as biology's paradigmatic radical generator.
The 5′‐dAdo• has been trapped and characterized in radical SAM enzymes via a recently discovered photoreactivity of the [4Fe‐4S]+/SAM complex, and has been confirmed as a catalytically active intermediate in enzyme catalysis.
The regioselective SAM S–C bond cleavage to produce 5′‐dAdo• originates in the Jahn–Teller effect.
The simplicity of SAM as a radical precursor, and the exquisite control of 5′‐dAdo• reactivity in radical SAM enzymes, may be why radical SAM enzymes pervade the tree of life, while B12 enzymes are only a few.

Related Results

Radical Enzymes
Radical Enzymes
AbstractRadical enzymes catalyze reactions with intermediate radicals, which are not free but bound to the enzyme. The catalytic reactions comprise generation of a radical species ...
Mechanism of Radical Initiation in the Radical SAM Enzyme Superfamily
Mechanism of Radical Initiation in the Radical SAM Enzyme Superfamily
Radical S-adenosylmethionine (SAM) enzymes use a site-differentiated [4Fe-4S] cluster and SAM to initiate radical reactions through liberation of the 5′-deoxyadenosyl (5′-dAdo•) ra...
Enzyme Activity: Allosteric Regulation
Enzyme Activity: Allosteric Regulation
Abstract Cells can respond to changes in their environment by altering the flow through special, regulated metabolic steps perfor...
The Saga of Sudden Sam
The Saga of Sudden Sam
The candid autobiography of all-star pitcher “Sudden Sam” McDowell, whose alcohol-fueled life quickly and famously spiraled out of control, and his ultimate redemption as a counsel...
Three in One: Systemic Lupus Erythematosus, HELLP Syndrome, and Antiphospholipid Syndrome: A Case Report and Literature Review
Three in One: Systemic Lupus Erythematosus, HELLP Syndrome, and Antiphospholipid Syndrome: A Case Report and Literature Review
Abstract Introduction Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease commonly affecting women of reproductive age. Its overlap with HELLP syndrome (Hemolysi...
Electrochemistry of Heterocycles
Electrochemistry of Heterocycles
Abstract The sections in this article are Overview on the Electrochemistry of Heterocycles Electrosyntheses of Heterocyc...

Back to Top